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ABSTRACT

The scan statistic is commonly used to test if a one dimensional point process
is purely random, or if any clusters can be detected. Here it is simultane-
ously extended in three directions: (i) a spatial scan statistic for the detection
of clusters in a multi-dimensional point process is proposed, (ii) the area of
the scanning window is allowed to vary, and (iii) the baseline process may be
any inhomogeneous Poisson process or Bernoulli process with intensity pro-
portional to some known function. The main interest is in detecting clusters
not explained by the baseline process.

These methods are illustrated on an epidemiological data set, but there
are other potential areas of application as well.

1. INTRODUCTION
A scan statistic is used to detect clusters in a point process. It has been studied
in the one-dimensional setting by Naus (1965a) and by many others. For a
point process on an interval fa, b], a window [t,t + w] of fixed size w < b— a is
moved along the interval. Over all possible values of t, the maximum number

1431

Copyright © 1997 by Marcel Dekker, Inc.



1482 KULLDORFF

of points in the window is recorded and compared to its distribution under the
null hypothesis of a purely random Poisson process.

The one-dimensional probiem has been extended in various directions.
When the points are grouped into one of several sub-intervals we have aggre-
gated data. This has been studied by Wallenstein et al. (1989) among others,
and is of interest when we have, for instance, monthly counts of some event.
Weinstock (1981) has studied the problem where under the null-hypothesis the
intensity of the underlying Poisson process has a known inhomogeneity. Vari-
ous authors, such as Saperstein (1972) and Naus (1974}, have studied a related
Bernoulli model, with a sequence of binary outcomes. Loader (1991} allows for
a non-fixed window size. Glaz and Naus (1983} have looked at a scan statistic
searching for multiple clusters. For any of these extensions, and depending on
the application, the scan statistic may or may not be conditioned on the total
number of points observed.

In this paper a spatial scan statistic is proposed. An attempt is made to
treat the problem in a setting as general as possible, except that the analysis is
always conditioned on the total number of observed points. The window may
take any predefined shape and the size of the window is allowed to vary as it
scans the study region. The latter is very useful when we lack a prior knowledge
about the size of the area covered by the cluster. The method also allows for
an arbitrary, but known, underlying intensity that governs the distribution of
points under the null hypothesis. This can take mary different forms depending
on the application. It is modeled as a measure & on a geographical space G.
Wher G is a line and g is a uniform measure on [a, b], we obtain the traditional
one dimensional problem as a special case. With the Lebesgue measure on the
plane we have a homogeneous spatial Poisson process. Other possible measures
mclude the following:

1 The spatial clustering of trees is studied in forestry. A problem of potential
interest is to see if there are clusters of trees that are of a specific kind or that
have a certain characteristic, after having compensated for the uneven spatial
distribution of all trees. That 1s, we want to know if the proportion of one kind
of tree is particularly high in some location. The measure of an area would in
this case be the total number of trees growing there.

2 In astronomy, there is an equivalent three-dimensional problem if we want
to detect clusters of a particular kind of star after compensating for the irreg-
ular spatial distribution of all stars.

3 Epidemiologists are interested in geographical clusters of disease. Here it
IS necessary to compensate for the uneven density of the population as a2 whole.
When data is aggregated into census districts the measure will be concentrated
at the central coordinates of those districts.

4 To find uranium deposits, airplanes measure Geiger counts as they fly in
parallel lines over large areas. A high number of counts in a specific area
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indicates a possible deposit. The measure would be uniform along the fiying
lines and zero elsewhere.

5 A zoologist may study the spatial distribution of sea gull nests. In an
archipelago, the nests will be located on islands. The appropriate measure
would be uniform over land and zero elsewhere.

6 If we are interested in space time clusters of a disease, then the measure
would still be concentrated in the geographical dimension as in example 3, but
it would also be extended ir a third dimension reflecting the population size
as 1t changes over time in each of the census districts.

7 It is not always sufficient to adjust for an uneven population distribution,
whether it be humans, trees, stars or something else. We may also need to
take various confounders into account. For example, in epidemiology we could
let the measure reflect the age standardized expected incidence rate.

In one dimension, the exact distribution of the test statistic is known only
in special cases. Much of the literature has been concerned with finding good
approximations. In higher dimensions the statistical theory becomes more
complex. Naus (1965b) obtained distributional bounds for a two dimensional
scan statistic on a square with uniform underlying measure, and with a rect-
angular window of fixed but arbitrary size. Loader {1991) treated the same
problem but allowed for variable window size. Turnbull et al. (1990), using
the underlying measure as described in example (3) 2bove, used a circular win-
dow with constant measure. Since the exact distribution of the test statistic
could not be determined, Monte Carlo simulation was used to perform the
hypothesis test. All the models above are special cases of what is outlined in
this paper. Two other special cases can be found in Kulldorff and Nagarwalla
(1995) and Hjalmars et al. (1995) who apply the spatial scan statistic to data
sets of leukemia in Upstate New York and Sweden respectively.

When the size of the scanning window is fixed, the test statistic is always
taken as the maximum number of points in the window at any given time. With
a2 variable window size that is no longer possible, and instead the likelihood
ratio test statistic is used (Loader, 1991).

In section 2 the Poisson and the Bernoulli models are described. The
likelihood ratio test statistic is then presented in Section 3, while Section 4
describes some of its theoretical properties. A discussion on computational
issues and a practical example are given in Sections 3 and 6, respectively.

2. POISSON AND BERNOULLI MODELS

Let N denote a spatial point process where N{A) is the random number of
points in the set A C G. As the window moves over the study area it defines a
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collection Z of zones Z C . Interchangeably, Z will be used to denote both
a subset of G and a set of parameters defining the zone.

For the Bernoulli model we consider only measures 4 such that p(A) is
an integer for all subsets 4 ¢ G. Each unit of measure corresponds to an
‘entity’ or ‘individual’ who could be in either one of two states, for example
with or without some disease, or being of a certain species or not. Iandividuals
in one of these states are defined as points, and the location of those individualis
constitute the point process. In the model, there is exactly one zone Z C (5
such that each individual within that zone has probability p of being a point,
while the probability for individuals outside the zone is q. The probability
for any one individual is independent of all the others. The null hypothesis
1s Hy : p = q. The alternative hypothesis is Hy:p>qZ € Z Under H,,
N({A) ~ Bin(u(A),p) for all sets A. Under H, N(A) ~ Bin(u(A),p) for all
sets A C Z, and N(A) ~ Bin(u(A),q) for all sets A c ZC.

Under the Poisson model, points are generated by an inhomogeneous Pois-
son process. There is exactly one zone Z C ( such that N{A) ~ Po(pu{An
Z)+qu(ANZ)) VA. The null hypothesis is H, : P = ¢, while the alternative
hypothesis states that H, : p > ¢, Z € Z. Under Hq, N{A) ~ Po(pu(A)) VA.
Note that one of the parameters, Z, disappears under the null hypothesis. This
is unusual but not unheard of, see for example Davies (1977).

The best choice of window, and thereby the corresponding collection Z of
zones, depends on the application. Some possibilities are:

1 All circular subsets.

2 Al circles centered at any of several foci on 2 fixed grid, with a possible
upper limit on circle size. (Kulldorff and Nagarwalla, 1994)

3 Same as (2) but with a fixed circle size. {Turnbull et al., 1989)
4 All rectangles of a fixed size and shape. (Naus, 1963b)

5 When looking for space-time clusters we could use cylinders, scanning
circular geographical areas over variable time intervals.

The underlying purpose of specifying a precise alternative is not to exclude
other possibilities. On the contrary, the purpose 1s not only to detect clustering
in the form of that specific alternative, but also to detect clusters in the form
of other similar alternatives. For example, if a test has good power for an
alternative with circular zones, then it will have {airly good power for squares
and many ellipses as well, but not necessarily for a narrow zone stretching from
one corner of a map to another.

How should we choose between the Bernoulli and the Poisson madels?
The choice does not matter much when the total number of points is small
compared to u(G). The Bernoulli and Poisson models then closely approximate
each other. In other cases it will depend on the application. If we have binary
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counts, such as two types of stars, then we should use the Bernoulli model. If
we have counts relating to some continuous risk factor, as with a Geiger meter,
we should use the Poisson model.

3. LIKELIHOOD RATIO TEST

[t is now time to derive the likelihood ratio test. It is slightly different for
the Bernoulli and the Poisson models, and we start with the former. Let nz
denote the observed number of points in zone Z, and ng the tota] number of
observed points.

3.1 Bernoulli model

The likelihood function for the Bernoulli model is expressed as
L(Z,p q) - pnz (1 . P)#(Z)-nz qneTmz (1 _ q)(“(c)—#(z))—(ﬂc—ﬂz)

To detect the zone that is most Likely to be a cluster, we find the zone Z
that maximizes the likelihood function. In other words, Z is the maximum
likelihood estimator of the parameter Z. We do this in two steps. First we
maximize the likelihood function conditioned on Z.

L2 ¥ sup L(Z ( nz ) ng )"
=35 iy = ] — —=_
@)= s llzpa = {7 ( M(Z))

X ( ng —ng )“G_nz (1 __ng-—ng )‘“(G)'“(Z”—(“G—nz) :
#(G) - u(2) u(G) - W(2) (1

n Rg=nz

when e m, and otherwise

- 35)" (55"~

Next, we find the solution_2 ={Z:L(Z) 2 L{Z')VZ' € Z}. In Section 5, the
numerical calculation of Z is discussed. The most likely cluster is of interest
in itself, but we are also interested in making statistical inference. Let

n ng —n u(Gl—ng
e muza= (i) ()

The likelihood ratio, X, can be written as

SUPzez 5o L(Z,pq)  L(Z)

A= =
Suppqu(Z!p’q) LO
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Note that the denominator depends only on the total number of points
ng and not on the spatial distribution of the points. The ratio A is used as the
test statistic, and how to obtain its distribution through Monte Carlo replicas
is described in Section 5.

So far we have discussed clusters in terms of an abnormally high number
of cases in some area. It could be that we are instead interested in detecting
areas with an unusually low number of points. This can be accomplished by
simply changing the direction of the two inequality signs in equation 1. The
same iIs true for the Poisson model,

3.2 Poisson model

The likelihood function for the Poisson model is a little more complex. The
probability of ng number of points in the study area is

e—pu(Z)—q(u(G)'-n(z)){pp(Z) + q(u(G) - p(Z2)))e )

nG!

The density function f(z) of a specific point being observed at location r is

pu(z) :
{ PR C) D fzeZ

gz} :
B Ta(u(GIm(z) LT EZ

We can hence write the likelihood function as

L(Z,p, Q) _ C-PH(Z)_Q(J‘(G)"#(Z))[py(Z) + Q(#(G) _ p(Z))]ﬂc

‘nc;!

pu(zi) qu(z,)
- z,l;lz pr(2) + q(p(G) — u(Z)) };Iz Pe(Z) + q(p(G) — u(2))

e~ Pr{Z)~qlu(G)—u(Z))

= - pﬁzq(nc'-ﬂz] H#(I") (3)

As before, the likelihood ratio is defined as in equation 2. We have

_ e—P#(G}pﬂG e~ e ne nc
Lo = Sl;p""—,——H#(IJ = (;(_(:;_)) H#(I.‘)

ng- I, n.g! 2

For the numerator we first take the supremum over all p and ¢ for a fixed Z.
Equation 3 takes its maximum when p=nz/u(Z)and g = (ne—nz)/{u(G) -
#(Z}), so

o (35)" (#55m) " Mt

ron (ng—ngz)
L(Z) = { L8 > Gioruey

c;;IG (,,—’;-G‘L))"G Hx, P(T-i)

otherwise.
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The test statistic A of the likelihood ratio test can now be written as

y = susziL(Z)
2 (28)" ., #lz)
o ) () ( (re - n2)
e (z5)™ ! #(Z)>(#(G)—u(2})) )

if there is at least one zone Z such that =& > -—I"G;"ZL, and A = 1 otherwise.
a(Z) T (u(G)~a(2))

I() is the indicator function.

4. PROPERTIES OF THE TEST STATISTIC

4.1 Detection versus inference

Most statistical methods for cluster analysis of a spatial point process are
either descriptive in the sense that they can detect the location of clusters but
without any inference involved, or they do inference but without the ability to
detect the location of clusters. An important characteristic of the spatial scan
test is that it does both, so that when the null hypothesis is rejected we can
locate the specific area of the map that causes the rejection. To be precise,
let x = {z,,7 = 1,...,ng)} denote the set of coordinates of the ng points in
a data set where Z is the most likely cluster, and let x' = {z!,1 = 1. ng}
be an alternative configuration with exactly the same number of points. The
following theorem holds for the Bernoulli and Poisson models.

Theorem 1 If the null hypothesis is rejected under x then it is also rejected
under X', if 2. = z; for all z; € Z.

In words, the theorem states that as long as the points within the zone
constituting the most likely cluster are located where they are, we would still
reject the null hypothesis no matter how the rest of the points were shuffled
around. For example, if the null hypothesis is rejected due to a disease cluster
in Seattle, it does not matter how we move around the cases on the U.S. east
coast, the null-hypothesis will still be rejected. This might sound like a self
evident property, but it does not hold for most other tests for spatial clustering
such as Knox (1964), Whittemore et al. (1987), Cuzick and Edwards (1990),
or Diggle and Chetwynd (1991). Those tests are hence not suitable if we want
to know the location of clusters. Rather, they are geared towards answering
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the question of whether the phenomenon of clustering occurs over the study
region as a whole, such as if a disease is infectious or not, a question for which
the spatial scan statistic is not suitable.

Proof: Let A(x) and A(x’) denote the values of the test statistic for the two
different data sets. Since the two data sets have the same number of points,
the distribution of A under the null hypothesis will be the same, and it is hence
enough to show that A(x’) > A(x). In the Bernoulli case we have

L2  U2IK) _ supg LZR) o
Lo Ly Ly
The first inequality holds since x’ has at least as many points within zone

Z as x. For the Poisson model it is trivially true if A{x} = 1. When Alx) > 1
we have from equation 4 that

1 ( nz \™? ng—nz \ °"2
wo=sw i (515) (=)
_}_( ny "z( ng = nz )RG_”’
K #(2)) #(G) — u(Z)
<L( m )z( ng —njy )"G"“’z
T K \p(z #(G) — u(2Z)

]

1 ny \"? ng —n ne=nz _ ,
sSSP (p(Z)) (p(c) - p(Z)) = A06).

where K = (ng/u(G))*s. The first inequality holds since for any constants «, §
and N, (@n)*(B(N —n)"~" is an increasing function of n when an > B(N —n).

Alx) =

4.2 Power

The power of the one dimensional scan statistic has been studied by Wallen-
stein et al. (1993,1994) and Sahu et al. (1993) among others. For the spatial
scan statistic we cannot expect to find a uniformly most powerful test, except
in the special case when there is only one zone in the alternative hypothe-
sis. Instead, we show that it fulfills a criterion making it what we call an
individually most powerful test.

To define an individually most powerful test we divide the composite alter-
native hypothesis into distinct subsets. The parameter space is partitioned into
a countable number of subsets {A;} such that A; N A; = @ for all j # 7', and
such that UA; constitutes the whole of the alternative hypothesis. Likewise,
and using the same index, the critical region C, where the null hypothesis is re-
jected, is partitioned into disjoint subsets {C;} where UC;, =C. Let C" = UC;]
denote an alternative critical region with corresponding disjoint subsets.
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Definition 1 For a particular significance level , a test is individually most
powerful with respect to a partition {A,} of the parameter space, and a partition
{C;} of the critical region, if for each Ay there are no sets ¢’ and {Ci} such
that

LCy=C forall j # k.
2. Plw € C'|Hyp) = a
3. Plw e Cil(Z,p,9)) > P(w € Cil(Z,p,9)) for any (Z,p.q) € As.

This means that if we fix the critical region except for its subset Cy as
indicated by statement 1, then the test is uniformly most powerful compared
to all remaining choices of the critical region and with respect to ali parameters
(Z.p.q) € Ax. This property is very important in any multipie testing type of
a situation, where there is a composite alternatijve hypothesis and where we
wish to know which part of it causes the rejection. As mentioned before, the
scan statistic has the ability to identify the zone responsible for rejecting the
null hypothesis, and if we fail to detect a real cluster, il is of little comfort
if the null hypothesis is rejected based on an untrue cluster in another part
of the study area. In fact, that is usually less desirable than just failing to
reject the null hypothesis. The problem resembles other muitiple comparison
situations, where instead of testing multiple cluster locations simultaneously,
we might test several new agricultural crop varieties to see if any of them are
better than the one presently in use, or we might simultaneously test several
potential risk factors for cancer.

If we are only concerned about rejection versus no rejection, without an
interest in the location of clusters, then the property of being an individually
most powerful test is of little value. For such a problem the likelihood ratio
based spatial scan statistic would be a suboptimal choice.

Now, let Az = {(Z,p,q) : p > q} and A = {(Z,p,9) : p = q}. Let Cz
denote the intersection of the critical region C and the subset of the sample
space in which Z is the most likely cluster.

Theorem 2 The test based on ) forms an individually most powerful test with
respect to the partitions {Az} and {Cz}. This holds for the Bernoulli as well
as the Poisson model.

Proof: We show that if statements (1) and (2) in the definition are true, then
(3) cannot hoid. For an arbitrary Z, let D_ = {w:w € Cp,w ¢ Cy} and
Dy ={w:welhwgCz}. Let

L(Z,p,qlw)
M= _—
el L{Holw)
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For the Poisson model, it follows from equation 4 that

22l s () enzle) yno-nz(e)
Gz )= })

u{Gy—u(Z

M= s uiZ) <
weD G G
gy CEVGEERR Y Uzl
weD_ (n/p(G))me “eb- L{Holw)

A similar argument holds for the Bernoulli case, based on equation 1. Now,
for any (Z,p,q) € Az,

Plw € Cz(Z,p,9)) — Plw € Cz{(Z,p,q))
= P(w € D4{(Z,p,q)) — Plwe D_|(Z,p,q))
_.f p(w|Z,p,q)dw — /(..'ED- p{w|Z,p,q)dw

= L{z dw — L{Z, p, qlw)dw
Lo, M2l = [ 1(2,p,ql0)

_ L(Z,p, qiw) _ L(Z,p,ql|w) y
_/wm L(Holw) L{Holw)dw /wED_ L{Holo) L(Hyjw)dw

</ o, ML(Holw)dw - /  ML(Holw)ds

= M{(P(w e D,|Hp) - P(UE D_|Hy)
= M (P(w e Cy{H) — P(w € Cz|Hy)
_M(P(we CIH{))—' ( € CIHQ))=

The second to last equality holds since C; = C} for all j # Z according to
statement 1 in the defirition.

=M (/ww P(w|Ho)dw — P(w|Ho) ) dw
)
)

5. COMPUTATIONS AND MONTE CARLO SAMPLING

In order to find the value of the test statistic, we need a way to calculate the
likelihood ratic as it is maximized over the collection of zones in the alternative
hypothesis. This might seem like a daunting task since the number of zones
could easily be infinite. Two properties allows us to reduce it to a finite prob-
lem. The number of observed points is always finite and for a fixed number of
points the likelihood decreases as the measure of the moving window increases.
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Consider the scanning window of example {2) in Section 2. If we let the circle
size increase for a fixed foci, we only need to recalculate the likelihood when-
ever a new point enters the circle. Since there is a finite number of points,
the number of times we need to compute the likelihood for each foci is finite,
and since the number of foci is also finite, the total number of calculations is
finite. Assuming a Bernoulli model or a homogeneous Poisson model, simtlar
arguments hold for the other four examples given in Section 2.

Once the value of the test statistic has been calculated, it is easv to do
the inference. We cannot expect to find the distribution of the test statistic in
closed analytical form. Instead we rely on Monte Carlo simulation. Originally
proposed by Dwass (1957), this technique was first used in the context of
a scan statistic by Turnbull et al. (1990). Because we know the underlying
measure g, we can obtain replications of the data set generated under the null
hypothesis when we condition on the total number of points ng. With 9999
such replications, the test is significant at the 3 percent level if the value of
the test statistic for the real data set is among the 500 highest values of the
test statistic coming from the replications.

In addition to the most likely cluster we might also want to look at sec-
ondary clusters with high likelihood values. Some of these will be related to the
most likely cluster in the sense that they contain about the same set of points
with their respective zones overlapping each other. Such secondary clusters
are usually of little interest, although they serve to remind us of the fact that
the obtained location and size of detected clusters are only estimates.

More interesting types of secondary clusters are those located in another
part of the study region. We define these to be clusters that do not overlap
with a more likely one. It is often of interest to report these clusters along
with the most likely one.

For inference, we may take a secondary cluster and compare and rank its
likelihood value with the maximum Jikelihood ratio from the Monte Carlo repli-
cations. Any secondary cluster that ranks below the significance level would in
itself have caused the rejection of the null hypothesis.even if there had been no
other more likely cluster in the data set. This gives us an inferential procedure
for secondary clusters as well, but since we are comparing a secondary cluster
from the data set with the most likely clusters from the replications such a
test is somewhat conservative.

6. EXAMPLE

We illustrate the modeis using data on sudden infant death syndrome (SIDS)
in North Carolina. The data were compiied by M. Symmons, D. Atkinson,
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TABLE |
The spatial scan statistic applied to sudden infant death syndrome in North
Carolina, adjusted for the uneven geographical distribution of births. Zones
refer to Figure 1 and incidence is the number of deaths per 1000 live births.

Zone # SIDs # Births Incidence p-value

z ng #(Z)
Bernoulli A 139 36376 3.8  0.0001
model B 59 14388 4.1 0.0005
Poisson A 139 36376 3.8 0.0001
mode] B 59 14388 4.1  0.0003

B
A

FIG 1: Two significant clusters of sudden infant death syndrome in North
Carolina, adjusted for the uneven geographical distribution of live births.

and the State Center for Health Statistics of the North Carolina Department
of Human Resources. They have previously been analysed by Cressie and
Chan (1989) among others.

For each of the 100 counties in North Carolina, the data comprise the
total number of live births as well as the number of sudden infant deaths
(SIDs) for the years 1974-1984. The number of live births in the countjes
ranges from 567 to 52345. The location of county seats were used as the
geographical coordinates. The total number of SIDs are 1503 out of 753354
live births. This gives a state wide incidence rate of 2.0 per 1000. The total
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number of births in each county, as well as the statewide number of SIDs, are
also stratified into whites and non-whites. The complete data are presented
by Cressie and Chan (1989).

The measure at the coordinate point of each county is taken as the number
of live births in that county. The measure is zero elsewhere. This is as in
example (3) of Section 1. As zones for the window we use all circles that are
centered at one of the county coordinate points and that include at most half
of the total population. This follows example (2) of Section 2.

Note that the zones are circular only with respect to the agpregated data.
As we draw the circles around one county seat, other counties will either be
compleiely part of a zone or else not at all, depending on whether its county
seat falls within the circle or not. Hence, we get a compact but irregular shaped
zone following the county boundaries. This can be seen in Figures 1 and 2.

6.1 Bernoulli Model

The Bernoulli model is the most natural one to use for this data set. We
have birth counts, and each birth can correspond to at most one sudden infant
death. Table 1 summarizes the results of the analysis.

The most likely cluster, A, consists of the counties of Bladen, Columbus,
Hoke, Robeson, and Scotland, in the southern part of the state. The rank is
1/10000, i.e. a p value of 0.0001.

There is one other significant cluster, B, composed of Halifax, Hertford,
and Northampton counties in the northeast. With a rank of 5/10000 it has a
p value of 0.0005. This latter test is conservative, because we are comparing a
secondary cluster in the data set with the most likely clusters from the replicas.

6.2 Poisson Model

Since we are dealing with a rare disease, the Poisson model should give a close
approximation to the Bernoulli model. That the results are indeed similar for
this data set can be seen in Table 1.

The Poisson approximation is especially useful when we have covariates
that we wish to include in the analysis. For SIDS, one possible covariate is
race (Cressie and Chan, 1989), which may be related to SIDS through unob.-
served variables such as quality of housing or access to health care. The racial
distribution differs widely among the counties in North Carolina, and could
possibly explain the previously detected clusters. We may want to see if there
are still geographic clusters after adjusting for race. This could lead us to other
spatially related risk factors that are otherwise hidden.

The overall incidence of SIDS is 1.512 for white children, and 2.970 for
non-white children (Cressie and Chan, 1989). The underlying measure at each
county coordinate z can now be defined as
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TABLE 11
The spatial scan statistic applied to sudden infant death syndrome in North
Carolina, adjusted for race and the uneven geographical distribution of live
births. Zones refer to Figure 2.

Zone # SIDs E[# SIDs] # Births p-value

z ng #(Z)
Poisson A 139 94.5 36376 (.0036
model C 191 140.8 86780  0.0060
s sg;_.'fl'fd}
L " -%39 - “gfg
C

FIG 2: Two significant clusters of sudden infant death syndrome in North

Carolina, adjusted for race and the uneven geographical distribution of live
births.

#(z) = white births x 1.512 + nonwhite births x 2.970

which is proportional to the expected number of SIDs under the null hypoth-
esis. Note that we do not need to know the number of SIDs in each county
subdivided by race. The result of the likelihood ratio test is given in Table 2.

Comparing this analysis to the one where race was not incorporated, we
observe three things.

1 With a rank of 36/10000 (p = 0.0036), the southern cluster A remains
significant, and cannot be explained solely by the high proportion of non-white
births in that area.

2 Cluster B in the northeast is no longer significant, with a rank of 3336/10000
{p =0.3336).
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3 A previously ‘hidden’ cluster C emerges in the west, with a rank of 60/10000
{p = 0.006). It consists of the following counties: Avery, Buncombe, Burke,
Caldwell, Cleveland, Haywood, Henderson, Jackson, Lincoln, Macon, Madi-
son, Mitchell, Polk, Rutherford, Swain, Transylvania, and Yancey.
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