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Abstract

Many di(erent methods have been proposed to test for geographical disease clustering, and
more generally, for spatial clustering of any type of observations while adjusting for an in-
homogeneous background population generating the observations. Despite the many proposed
test statistics, there has been few formal comparisons conducted. We present a collection of
1,220,000 simulated benchmark data sets generated under 51 di(erent cluster models and the
null hypothesis, to be used for power evaluations. We then use these data sets to compare the
power of the spatial scan statistic, the maximized excess events test and the nonparametric M
statistic. All have good power, the 8rst having an advantage for localized hot-spot type clusters
and the second for global clustering where randomly located cases generate other cases close
by. By making the simulated data sets publicly available, new tests can easily be compared with
previously evaluated tests by analyzing the same benchmark data.
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1. Introduction

A large number of di(erent tests for spatial randomness that adjust for an un-
even background population have been proposed. Such test statistics are used to test,
among other things, whether the geographical distribution of disease is random or not,
adjusting for the geographical distribution of the population at large. They are also
used in areas such as archaeology, botany, criminology, demography, ecology,
economics, engineering, forestry, genetics, geography, history, neurology, sociology
and zoology. Several review articles have been written (Biggeri and Marchi, 1993;
Elliott et al., 1995; Heywood, 1991; Kulldor(, 1998; Lawson et al., 1999; Marshall,
1991; Moore and Carpenter, 1999; Orton, 1982; Sokal and Oden, 1978; Waller and
Jacquez, 1995), the most extensive having identi8ed over 100 di(erent test statistics
(Kulldor().

There have been few systematic comparative evaluations of tests for spatial random-
ness. Di(erent tests have sometimes been applied to the same data sets (Alexander
and Boyle, 1996; Draper, 1991; Glaser, 1990; Shaw et al., 1988; Turnbull et al., 1990;
Zoellner and Schmidtmann, 1999), but for a formal comparison of test statistics it is
important to evaluate their power (Wartenberg, 1990), and only a small fraction of the
proposed tests has undergone such evaluations. Three major considerations when de-
signing a power comparison study are (i) the reproducibility of the clustering process,
(ii) the clustering models considered as the alternative hypotheses, and (iii) minimiza-
tion of the bias and variance when estimating the di(erence in power for di(erent
tests.

1.1. Reproducibility

While very important, simulated power comparisons are tedious, time consuming and
unglamorous to perform. Each of the methods to be evaluated must be programmed, the
simulated data must be generated, and each test statistic must be calculated for each
simulated data set. If there are previously published power evaluations, it is some-
times possible to avoid redoing the calculations for already evaluated test statistics,
but that requires that the earlier simulation models are described in complete detail,
which is seldom the case. The ideal is to go one step further though, and build on
previous power evaluations using not only the same alternative models but also the
exact same simulated data. That minimizes the random variation when the methods are
compared.

In this paper, we present and provide access to a set of benchmark simulated data
sets. Using this benchmark, we evaluate the power of three test statistics for disease
clustering. Other researchers can then easily compare tests of their interest to previ-
ously evaluated test statistics by simply reanalyzing the benchmark data sets. This is
the most economical way to conduct power comparisons of many di(erent test statis-
tics. Past evaluations of tests for spatial randomness have for natural reasons been done
mostly as pairwise power comparisons or more rarely in groups of three or four (Kull-
dor( and Nagarwalla, 1995; Oden, 1995; Rogerson, 1999; Swartz, 1998; Tango, 1995;
Tango, 1999a; Tango, 2000; Vach, 1994). By establishing the benchmark data sets,
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any new test evaluated will automatically be compared with all previously evaluated
test statistics.

1.2. Clustering models

With one exception, earlier power comparisons all considered 8rst-order clustering
models where cases are located independently of each other, but where the relative
risk is di(erent in di(erent geographical areas. Most of these evaluated the power for
a clustering model with one (Kulldor( and Nagarwalla, 1995; Rogerson, 1999; Swartz,
1998; Tango, 1995; Tango, 1999a; Tango, 2000), two (Swartz, 1998; Tango, 1995;
Tango, 2000), three (Tango, 2000) or four (Swartz, 1998) hot-spot clusters. As an
important alternative, Oden (1995) used a clustering model with a di(erent relative risk
in each census area. Vach (1994) is the only one who has considered a second-order
clustering model. In his model, the location of one case is dependent on the location
of other previously generated cases, with the risk varying geographically at the same
time. There has not been any power comparison using a pure second-order model,
where each particular case is randomly located, so that the relative risk is constant
throughout the map, but where the location of cases are dependent on each other. It
is important to realize that while 8rst- and second-order models are very di(erent in
how the points are generated, the resulting point patterns may be exactly the same,
and hence indistinguishable. Bailey and Gatrell (1995, Chapter 3) provide an excellent
discussion of this.

In this study we use 61 di(erent clustering models, 15 with a single hot-spot cluster,
20 with multiple hot-spot clusters, and 26 with purely second-order clustering models
where the risk is constant throughout so that any one particular case is spatially ran-
domly located, but where the location of di(erent cases are dependent on each other.
For each model, the power is calculated conditioned on two di(erent levels of the
total number of cases. The number of alternative clustering models considered have in
past studies been in the range of 3–8, with the exception of Vach (1994) and Roger-
son (1999), who considered 12 and 20 di(erent clustering models respectively. Tango
(1995) is the only one who has evaluated the power for the same models but with
di(erent number of cases.

Another important aspect of a clustering model is the background population used.
We use a real data set consisting of all women in 245 counties in Northeastern United
States during 1988–1992. This is a fairly typical epidemiological data set, with data
aggregated into a mix of rural and urban census areas.

1.3. Minimization of bias and variability

For some tests it is possible to evaluate the power using an asymptotic approximation
of the test statistic distribution (Oden, 1995; Rogerson, 1999; Tango, 1995). Unfortu-
nately, asymptotic approximations do not exist for most test statistics. When they do
exist, the asymptotics may be de8ned in terms of the geographical area, the population
size or the number of cases going to in8nity, with the other two parameters held at a
speci8c constant or rate, and the approximations must be interpreted considering these
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asymptotic concepts. Unless the approximations for all test statistics are very good,
it is necessary for comparison purposes to obtain the critical values through a large
number of simulated data sets randomized under the null hypothesis. In this paper we
present two groups of 100,000 simulated data sets to estimate the critical values, with
600 and 6000 cases, respectively.

In order to minimize the variability of the estimated power di(erence between tests,
it is important to condition the analysis on a particular population distribution, and on
the total number of cases. Moreover, di(erent tests should be evaluated using the same
random data sets.

Another factor determining the variance of an estimated power di(erence is the
number of random data sets generated under each alternative hypothesis. As part of
the benchmark data, we present 10,000 random data sets for each alternative.

1.4. Test statistics compared

Tests for spatial randomness can be classi8ed based on their purpose. Focused tests
are designed to test whether a local cluster exist around a predetermined point source,
while general tests looks for clusters without any preconceived assumptions about their
location (Besag and Newell, 1991). Among general tests, cluster detection tests are used
both to detect local clusters, without any preconceived idea of their location, and to de-
termine their statistical signi8cance. Global clustering tests, on the other hand, are used
to determine whether there is clustering present throughout the study area, without de-
termining statistical signi8cance of individual clusters (Kulldor(, 1998; Tango, 1999a).

Discussions regarding the di(erences between the latter two types of general tests
have been provided elsewhere (Kulldor(, 1998; Tango, 1999a), but their important
di(erence is not always considered, and there has never been a formal study showing
how they di(er in terms of their power to detect di(erent types of clustering. In fact,
the power of global clustering tests has typically been evaluated using hot-spot clus-
ter models. In this paper we evaluate the power of the spatial scan statistic (Kulldor(,
1997), the maximized excess events test (Tango, 2000) and Bonetti–Pagano’s nonpara-
metric M statistic (Bonetti and Pagano, 2001a,b). These were chosen so as to not only
compare three di(erent tests, but equally important, to illustrate the di(erences between
the two types of tests. We show that the spatial scan statistic, a cluster detection test,
has good power for hot-spot cluster alternatives, while the maximized excess events
test, a global clustering test, has good power when clustering occurs throughout the
geographical region of study. The M statistic, also a global clustering test, performs
well for multiple hot-spot clusters.

Most tests for spatial clustering depend on a parameter that determines the scale of
clustering. This includes the � in Tango’s excess events test (Tango, 1995), the k in
Cuzick–Edward’s k-nearest neighbor test (Cuzick and Edwards, 1990), and the radius
of the circle in Turnbull’s CEPP (Turnbull et al., 1990). The three tests compared in
this paper do not depend on such a pre-speci8ed parameter. This was a main reason
for evaluating these particular test statistics. We expect that more such tests will be
proposed as extensions of earlier methods, and it will then be of special interest to
compare them with the tests evaluated here.
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2. Benchmark data sets

For the benchmark data sets we use the female population in the 245 counties
and county equivalents in the Northeastern United States, consisting of the states of
Maine, New Hampshire, Vermont, Massachusetts, Rhode Island, Connecticut, New
York, New Jersey, Pennsylvania, Delaware and Maryland, as well as the District
of Columbia. Each county is geographically represented by a centroid coordinate.
As the population for each county we used the number of women living there ac-
cording to the 1990 United States census. This data has previously been used to
evaluate the existence of geographical clusters of breast cancer mortality (Kulldor(
et al., 1997). Both the population data and the geographical coordinates are available
at ‘http://www.commed.uchc.edu/biostat/datasets/’.

2.1. Hot-spot clusters

For the hot-spot alternatives, we constructed three di(erent sets of local clusters in
a rural, urban and mixed area, respectively. Within each of these three sets, we con-
structed 8ve di(erent size clusters using 1, 2, 4, 8 and 16 counties. The center of
the rural cluster was Grand Isle County in northern Vermont, on the Canadian border.
Among the 245 counties, Grand Isle has the smallest population. The center of the
mixed cluster was Pittsburgh (Allegheny County) in western Pennsylvania. Pittsburgh
is a large city, surrounded by rural areas. The center of the urban cluster was Man-
hattan (New York County) in New York City, closely surrounded by other very urban
counties. Additional counties were added to the central county by order of geographic
distance between county centroids. The clusters with 16 counties are shown on the map
in Fig. 1. The New York City cluster is close to the population center of the region,
while the Pittsburgh cluster contains the urban area furthest away from the population
center.

The counties within each cluster were given a higher risk than the remaining counties.
For each of the 15 clusters, the relative risks and the expected number of cases under
both the null and the alternative hypotheses are given in Table 1. The relative risks
were set so that the null hypothesis would be rejected with probability 0.999 when
using a standard binomial test, had we known the ‘cluster counties’ a priori, not taking
the multiple testing into account. Let n be the combined population in the cluster
counties, and let N be the total population in all counties. Conditioned on the total
number of cases C, the observed number of cases in the ‘cluster counties’ is under
the null hypothesis binomially distributed with mean m0 = Cn=N and variance v0 =
Cn=N (N − n)=N . Using the normal approximation for the binomial distribution, the
critical number of cases k needed in order for a one-sided test to reject the null
hypothesis at the 0.05 level is then the k such that (k − m0)=

√
v0 = 1:645. Under the

alternative hypothesis with a relative risk of r for the ‘cluster counties’, the number of
cases in those counties is binomially distributed with mean mA = Cnr=N − n + nr and
variance vA = Cnr=(N − n + nr) (N − n)=(N − n + nr). Using the normal approximation
again, we then selected the relative risk r such that (k − mA)=

√
vA = 3:09. This choice

of relative risks provides an upper limit of 0:999 for the power attainable by any test

http://www.commed.uchc.edu/biostat/datasets/'
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Fig. 1. Map showing the rural cluster centered around Grand Isle in the north, the mixed cluster centered
around Pittsburgh in the west and the urban cluster centered around Manhattan, New York, in the center.

Table 1
Hot-spot clusters E[c|H0] is the expected number of cases under the null hypothesis, and E[c|HA] is the
same under the alternative. RR is the relative risk

With 600 simulated cases With 6000 simulated cases

Counties E[c|H0] E[c|HA] RR E[c|H0] E[c|HA] RR

Rural 1 0.05 10 192.89 0.5 13 23.73
(On edge) 2 0.46 12 27.03 4.6 23 4.96

4 2.69 18 7.05 26.9 59 2.21
8 4.16 22 5.35 41.6 80 1.92

16 7.32 28 3.90 73.2 121 1.66

Mixed 1 14.43 39 2.85 144.3 208 1.45
(Corner) 2 16.41 42 2.70 164.1 231 1.42

4 22.52 51 2.40 225.2 302 1.36
8 27.47 58 2.24 275.7 358 1.32

16 34.22 67 2.10 342.2 434 1.29

Urban 1 15.97 42 2.73 159.7 226 1.43
(Central) 2 21.78 50 2.43 217.8 293 1.36

4 59.99 100 1.81 599.9 716 1.22
8 101.96 150 1.63 1019.6 1162 1.17

16 154.94 209 1.53 1549.4 1713 1.15
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for spatial clustering, and a yard stick by which to compare the performance of a test
statistic on di(erent hot-spot clusters.

In order to evaluate how the disease clustering tests perform when there are multiple
hot-spot clusters, we constructed 8fteen alternative models that included two clusters,
urban=rural, urban=mixed or mixed=rural, with the same number of counties in both
clusters. For another 8ve alternative models, we included three clusters, one of each
type, with an identical number of counties in each. For each cluster we set the relative
risks as before, according to Table 1. Note that while the number of counties is the
same in each cluster, the relative risks and the population sizes are di(erent.

In total we constructed 35 di(erent hot-spot cluster models, with varying character-
istics.

2.2. Global chain clustering

For the global clustering alternative, we want cases to be clustered wherever they
occur in the region. Moreover, for all counties we want the expected number of cases
to be the same under the null and alternative hypotheses. These requirements pose a
special challenge in constructing a clustering model.

For the global clustering model a certain number of cases are 8rst located randomly
on the map, according to the null hypothesis. These original cases then generate other
new cases close by. If each original case generates one additional case, we call them
twins, and if two additional cases are generated, we call them triplets.

Let ni be the population of county i, and let N =
∑

i ni. Let dij be the Eu-
clidean distance between counties i and j. If the original case is in county i, a
natural way to assign its twin is to put it in county j, where j is chosen so that∑

k I(dik ¡ dij)nk ¡ rN 6
∑

k I(dik 6dij)nk , for some constant 06 r ¡ 0:5. This
means that the twin is selected as the rN -nearest neighbor of the original case. In
other words, a randomly selected case has probability r of being closer than the twin
to the original case. A problem with this type of approach is that the additional cases
will not be spatially randomly distributed, but have a higher chance to occur in the
central areas of the map as compared to outlying areas. This is because someone in
the center of the map is a closer neighbor to more other individuals as compared to
someone that lives close to the border. Hence, the requirement that every county has
the same expected number of cases under the null and alternative hypotheses is not
met.

To overcome the above problem, we used what we call a global chain cluster-
ing model. The counties are tied together sequentially on a chain that passes through
each county exactly once, after which it reconnects with the 8rst county on the
chain, forming a Hamiltonian cycle. The randomization of twins and triplets is then
embedded within this chain, so that an additional case is assigned to county j if∑

k I(d′
ik ¡ d′

ij)nk ¡ rN 6
∑

k I(d′
ik 6d′

ij)nk , where d′
ij is now the distance in one

particular direction along the chain connecting the counties. Hence, the twins are as-
signed as the rN nearest neighbor along one direction of the chain. For twins, the
probability model is the same independent of the direction used. For triplets, the two
new cases were assigned in opposite directions. Note that the chain does not imply
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Fig. 2. Map showing the circular chain of counties used for the global chain clustering model.

that the ‘disease’ spreads itself around the chain, just that twin and triplet cases are
located in either of only two directions, as de8ned by the chain.

The chain used is shown in Fig. 2. The chain was constructed so that two counties
next to each other on the chain always border each other geographically. Moreover,
it was constructed so that all counties in a state occur consecutively along the chain,
except for New York and New Hampshire where that was not possible as these two
states stretch from the Canadian border to the Atlantic coast. Within these parameters,
the exact construction of the chain is arbitrary, but an attempt was made to have
counties that are geographically close to be close along the chain as well, to the
largest extent possible.

We constructed di(erent clustering models by using di(erent constants r for the pop-
ulation based distances between the twins. In the most clustered scenario, the distance
was zero, so that twins are always assigned to the same county. The chain was not
needed for this scenario. In a second set of clustering models, r was deterministically
set to be 0.005, 0.01, 0.02, 0.04, 0.08 and 0.16, respectively. In a third set of clustering
models, r was exponentially distributed with mean 0.005, 0.01, 0.02, 0.04, 0.08 and
0.16, respectively.

With the chain model, to use r =1 is the same as using r =0. To use r =0:5 would
assign the twins at the opposite ends of the chain, typically putting them further away
from each other than they would be by chance, leading to the opposite of clustering. If
the chain were a perfect circle with even population distribution along the circle, then
r =0:22 would correspond to a situation where the expected distance between twins is
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the same as the expected distance between any two cases under the null model (see
the appendix). If the chain was circular, with an uneven population distribution, that
equality would hold for a smaller r. In our case, we do not have a circular chain so
it is not clear what value of r represents a situation of no clustering, but the above
reasoning for a perfectly circular chain means that we should not necessarily expect
to see clustering for distances greater than r = 0:22, and the largest distance used at
r = 0:16 represents at most a very weak amount of clustering.

The equivalent 13 models were also used for triplets, resulting in a total of 26 global
chain clustering models.

2.3. Simulated data

In order to perform power comparisons, we constructed a number of random data
sets. These are in two groups, with 600 and 6000 simulated cases respectively. These
numbers were chosen because we wanted the total number of cases to be divisible by
both 2 and 3, to 8t with both the twin and triplet models. The same data sets were
used to evaluate power both at the � = 0:05 and 0:01 signi8cance levels.

The same null hypothesis is used throughout, where the relative risk is set to one
for each county, and case locations are independent of each other. This means that a
particular case is assigned to county i with probability ni=N . We generated 100,000
random data sets with 600 cases and the same number of data sets with 6,000 cases.
These are used to estimate the cut-o( point for signi8cance. For each alternative hy-
pothesis, we generated 10,000 random data sets. Using the null cut-o( points, these
were used to estimate the power. A Lehmer random number generator was employed,
with modulus 2; 147; 483; 647 and multiplier 48,271 (Park and Miller, 1988).

The same data sets were used for the three tests, so as to eliminate any power di(er-
ential due to some data sets being by chance more clustered than others. All 1,220,000
data sets can be downloaded from the world wide web at ‘http://www.commed.uchc.edu/
biostat/datasets/’.

3. A cluster detection test and two global clustering tests

The clustering models described above can be used for power analysis of any number
of disease clustering tests. In this paper we estimate the power of one cluster detection
test, the spatial scan statistic (Kulldor(, 1997), and two global clustering tests, the
maximized excess events test (Tango, 2000) and Bonetti–Pagano’s M statistic (Bonetti
and Pagano, 2001a,b). As others use the same data sets to evaluate other disease
clustering tests, they only need to do the power calculations for the new tests, enabling
an automatic comparison with these three test statistics.

3.1. The spatial scan statistic

The spatial scan statistic (Kulldor(, 1997) imposes a circular window on a map and
lets the circle centroid move across the study region. For any given position of the

http://www.commed.uchc.edu/
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centroid, the radius of the window is changed continuously to take any value between
zero and some upper limit. In total, the method uses a set Z containing an in8nite
number of distinct circles, each with a di(erent location and size, and each being a
potential cluster. We set the upper limit so that the circle may contain at most 50
percent of the total population.

Under the alternative hypothesis, there is at least one circle for which the underlying
risk is higher inside the circle as compared to outside. For each circle, it is possible
to calculate the likelihood to observe the observed number of cases within and outside
the circle respectively. The circle with the maximum likelihood is de8ned as the most
likely cluster. This is the cluster that is least likely to have occurred by chance.

The likelihood can be calculated assuming either a Poisson or Bernoulli model,
depending on how the cases are generated. We use the former.

Let c(Z) be the observed number of cases in circle Z . Let n(Z) be the expected
number of cases in circle Z under the null hypothesis, so that n(A) = c(A) = C, where
A is the total region under study. Let L(Z) be the likelihood under the alternative
hypothesis that there is a cluster in circle Z , and let L0 be the likelihood under the
null hypothesis. It can then be shown that

L(Z)
L0

=
(

c(Z)
n(Z)

)c(Z) (C − c(Z)
C − n(Z)

)C−c(Z)

(1)

if c(Z) ¿ n(Z) and one otherwise. Details, including derivations as a likelihood ratio
test, have been given elsewhere (Kulldor(, 1997). As this likelihood ratio is maximized
over all the circles, it identi8es the one that constitutes the most likely cluster. The
test statistic is

max
Z

L(Z)
L0

:

When derived as a likelihood ratio test, it is based on a set of alternative hypotheses,
each with a single circular cluster of di(erent size, location and relative risk. This does
not mean that the test statistic can only detect circular clusters, but should expect higher
power for more compact clusters if everything else is equal. Its p-value is obtained
through Monte Carlo hypothesis testing (Dwass, 1957). Calculations were done using
SaTScan (Kulldor( et al., 1998). The method has been applied in a wide variety of
epidemiological studies (e.g. Cousens et al., 2001; FQevre et al., 2001; Imai, 1998;
Kojima, 1999; Kulldor( et al., 1997; Nakatani, 1999; Sankoh et al., 2001; Viel et al.,
2000; Walsh and Fenster, 1997).

3.2. The maximized excess events test

Let ci be the observed number of cases in county i, and let C =
∑

i ci be the total
number of cases. Let ni be the expected number of cases in county i under the null
hypothesis, so that

∑
i ni = C. For a given constant �, the excess events test statistic

(Tango, 1995) is de8ned as

EET (�) =
∑

i

∑
j

aij(dij; �) (ci − ni)(cj − nj);
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where

aij(dij; �) = e−4d2
ij =�

2

and dij is the Euclidean distance between counties i and j. Other choices of aij(dij; �)
are also possible (Oden, 1995; Tango, 1995; Rogerson, 1999). The choice of � relates
to the geographical scale of clustering, and is to some extent arbitrary. A large � will
give a test sensitive to geographically large clusters, while a small � will make the test
more sensitive to small ones.

To be able to detect clustering irrespectively of its geographical scale, Tango (2000)
proposed the maximized excess events test (MEET):

MEET = min
06�6U

P[EET (�) ¿ eet(�)|H0; �];

where eet(�) is the observed value of the excess events test statistic conditioning on �,
and U is an upper limit on �. Practical implementation of the test uses ‘line search’ by
discretization of �, and the MEET statistic is evaluated using Monte Carlo hypothesis
testing (Dwass, 1957).

Calculations were done using a specially written S-Plus code (Tango, 1998). The
method has been applied to various epidemiological data sets (Imai, 1998; Kojima,
1999; Nakatani, 1999; Tango, 1999b).

3.3. Bonetti–Pagano’s M statistic

The M statistic proposed by Bonetti and Pagano (2001a,b) uses the interpoint dis-
tance distribution function to describe the spatial pattern of a set of points. Let F(d)=
P(D6d) be the cumulative distribution function of the random variable D =
dist(X1; X2) that represents the distance between the coordinates X1 and X2 of two
individuals chosen at random from a spatial distribution %X (·). F can be estimated
consistently from a random sample of n individuals X1; X2; : : : ; Xn by the quantity

F̂n(d) =
1
n2

n∑
i=1

n∑
j=1

I(dist(Xi; Xj)6d):

Moreover,
√

n(F̂n(d)−F(d)) converges to a Gaussian process (Bonetti and Pagano,
2001b). A nonparametric test for deviations from the null distribution %X (·) can thus
be constructed by de8ning a statistic that measures the distance between the func-
tion F̂n(·) based on the observed case locations and the function F(·) based on the
underlying population at risk. One such test statistic can be constructed by split-
ting the distance axis [0; dmax] (with dmax being the largest observed interpoint dis-
tance) into the K intervals [(t − 1)dmax=K; tdmax=K], for t = 1; : : : ; K . From the vectors
F = [F(dmax=K); : : : ; F(dmax)] and F̂n = [F̂n(dmax=K); : : : ; F̂n(dmax)] one can then con-
struct the quadratic form M=(F̂n−F)′S−(F̂n−F), where S− is the sample (generalized)
inverse of the variance–covariance matrix of F̂n. Note that if one creates the vector of
8rst di(erences from F̂n and F, then M can be written equivalently in terms of such
8rst di(erences.
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In the discrete setting such as the one considered here, the population distribution %
and the sample are summarized by probabilities pj and by counts nj at some T 8xed
locations (indexed by j = 1; : : : ; T ). F̂n can then be written as

F̂n(d) =
1
n2

T∑
i=1

T∑
j=1

ninj I(dij 6d);

where dij is the distance between the two locations indexed by i and j, respectively.
While the asymptotic distribution of the M statistic can be derived, convergence to this
distribution appears to be slow. So we obtain an estimate of the distribution of M by
sampling from the (known) probabilities pj at the T locations.

This statistic incorporates the geographical information by taking into account the
behavior of the interpoint distance distribution over its whole range and capturing the
dependence among the interpoint distances through the covariance matrix. Because of
its de8nition, the interpoint distance distribution (and thus the M statistic, or other
measures of the distance between F̂n and F) is a summary of the spatial distribution
that can be de8ned over continuous settings, and in very high dimensional spaces.

Note that in the settings described in this paper only an individual’s county of
residence is reported. Thus only crude approximations of all the interpoint distances
are available, and thus the interpoint distance distribution is less informative than it
could be.

4. Power comparison results

4.1. Hot-spot clusters

The results of the power analyses for the hot-spot clusters are shown in Table 2.
For the rural clusters, the spatial scan statistic has very high power while the power
of the other two tests is low. For the mixed clusters, all tests have high power with a
slight advantage for the spatial scan statistic. For the urban clusters, it is instead the
maximized excess events test that has a slight advantage.

All tests have higher power when there are two or three di(erent hot-spot clusters in
the same model. This is expected since more clustering is introduced when additional
clusters are added. With some exceptions, the spatial scan statistic has slightly higher
power, but the di(erences are in most cases small.

Comparing the power between di(erent cluster models, we 8nd that the spatial scan
statistic has highest power for the rural cluster models, followed by the mixed, and
then the urban. The maximized excess events test on the other hand, has highest power
for the urban cluster models, followed by the mixed and the rural. As a contrast, the
M test reaches its highest power for the mixed cluster models. Does this mean that the
power is a function of a cluster’s population size? Not necessarily. Within the mixed
cluster models, the opposite relationship occurs. The power of the spatial scan statistic
increases with increasing population size, while for the maximized excess events test,
the power sometimes decreases with increasing cluster population size. The power is
not a simple function of a cluster’s population size, but is also a function of the
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Table 2
Estimated power of the spatial scan statistic, the M test and the maximized excess events test (MEET) for
35 di(erent alternative models with di(erent hot-spot clusters, for 600 and 6000 simulated cases, respectively,
and for signi8cance levels 0:05 and 0:01

With 600 simulated cases With 6000 simulated cases

� = 0:05 � = 0:01 � = 0:05 � = 0:01

Counties Scan M MEET Scan M MEET Scan M MEET Scan M MEET

Rural 1 0.998 0.355 0.196 0.992 0.127 0.057 0.991 0.102 0.058 0.974 0.024 0.009
(Edge) 2 0.991 0.406 0.221 0.986 0.154 0.072 0.955 0.155 0.072 0.901 0.042 0.016

4 0.973 0.292 0.229 0.946 0.082 0.064 0.920 0.189 0.088 0.844 0.056 0.019
8 0.971 0.241 0.213 0.937 0.058 0.055 0.929 0.182 0.097 0.846 0.055 0.019

16 0.969 0.197 0.229 0.936 0.041 0.062 0.936 0.191 0.112 0.849 0.059 0.027

Mixed 1 0.936 0.909 0.925 0.871 0.757 0.833 0.885 0.791 0.831 0.783 0.585 0.643
(Corner) 2 0.939 0.883 0.896 0.871 0.703 0.771 0.890 0.751 0.773 0.784 0.522 0.556

4 0.937 0.815 0.838 0.873 0.590 0.654 0.891 0.645 0.694 0.784 0.398 0.416
8 0.941 0.794 0.817 0.876 0.567 0.599 0.905 0.649 0.687 0.810 0.408 0.390

16 0.949 0.745 0.832 0.886 0.484 0.602 0.923 0.607 0.705 0.830 0.364 0.407

Urban 1 0.922 0.342 0.941 0.818 0.115 0.870 0.841 0.198 0.859 0.733 0.061 0.697
(Central) 2 0.903 0.397 0.920 0.823 0.154 0.830 0.848 0.253 0.840 0.728 0.089 0.669

4 0.892 0.711 0.961 0.794 0.428 0.902 0.862 0.568 0.945 0.730 0.320 0.861
8 0.913 0.844 0.983 0.824 0.619 0.951 0.896 0.740 0.978 0.781 0.508 0.939

16 0.926 0.777 0.986 0.836 0.504 0.950 0.918 0.721 0.982 0.816 0.477 0.945

Rural 1 1.000 0.980 0.964 0.999 0.916 0.910 0.998 0.838 0.834 0.994 0.652 0.643
and 2 0.999 0.970 0.952 0.997 0.894 0.871 0.993 0.890 0.812 0.975 0.666 0.594
mixed 4 0.997 0.931 0.930 0.987 0.804 0.793 0.990 0.928 0.802 0.961 0.588 0.535

8 0.996 0.915 0.931 0.986 0.741 0.772 0.990 0.962 0.802 0.958 0.564 0.523
16 0.996 0.827 0.941 0.982 0.590 0.804 0.991 0.921 0.854 0.961 0.483 0.607

Rural 1 1.000 0.709 0.970 0.998 0.400 0.923 0.998 0.301 0.877 0.992 0.112 0.727
and 2 0.999 0.644 0.962 0.996 0.334 0.895 0.991 0.310 0.864 0.970 0.116 0.706
urban 4 0.992 0.811 0.971 0.974 0.538 0.912 0.981 0.664 0.945 0.938 0.410 0.857

8 0.991 0.884 0.977 0.968 0.667 0.936 0.985 0.817 0.973 0.941 0.596 0.920
16 0.987 0.776 0.975 0.947 0.481 0.915 0.978 0.768 0.975 0.917 0.518 0.917

Mixed 1 0.987 0.964 0.998 0.950 0.868 0.995 0.968 0.864 0.994 0.907 0.691 0.974
and 2 0.984 0.950 0.995 0.950 0.829 0.984 0.966 0.843 0.984 0.897 0.647 0.947
urban 4 0.966 0.954 0.991 0.901 0.830 0.969 0.958 0.903 0.987 0.873 0.746 0.948

8 0.954 0.970 0.990 0.871 0.873 0.960 0.944 0.936 0.989 0.841 0.810 0.946
16 0.935 0.929 0.984 0.811 0.742 0.935 0.934 0.911 0.987 0.816 0.757 0.936

Rural, 1 1.000 0.991 0.999 0.999 0.958 0.997 0.999 0.918 0.994 0.996 0.783 0.975
mixed 2 1.000 0.981 0.998 0.999 0.920 0.992 0.998 0.890 0.989 0.990 0.721 0.960
and 4 0.996 0.979 0.994 0.981 0.895 0.973 0.994 0.928 0.988 0.965 0.792 0.949
urban 8 0.992 0.980 0.989 0.964 0.901 0.952 0.991 0.962 0.988 0.950 0.870 0.941

16 0.977 0.929 0.983 0.916 0.744 0.918 0.980 0.921 0.982 0.910 0.770 0.924
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Table 3
Estimated power of the spatial scan statistic, the M test and the maximized excess events test (MEET)
for 26 di(erent global chain clustering models, for 600 and 6000 simulated cases, respectively, and for
signi8cance levels 0:05 and 0:01

With 600 simulated cases With 6000 simulated cases

� = 0:05 � = 0:01 � = 0:05 � = 0:01

Distance(r) Scan M MEET Scan M MEET Scan M MEET Scan M MEET

Twins
No distance 0 0.791 0.860 0.990 0.513 0.616 0.945 0.826 0.911 0.988 0.549 0.773 0.942

Fixed 0.005 0.392 0.346 0.624 0.197 0.130 0.376 0.389 0.397 0.621 0.190 0.178 0.362
distance 0.01 0.285 0.163 0.406 0.131 0.044 0.201 0.277 0.181 0.398 0.124 0.061 0.186

0.02 0.194 0.087 0.264 0.084 0.019 0.110 0.188 0.100 0.259 0.077 0.025 0.106
0.04 0.124 0.060 0.174 0.049 0.014 0.068 0.119 0.067 0.169 0.042 0.015 0.065
0.08 0.080 0.051 0.109 0.024 0.009 0.038 0.082 0.056 0.108 0.024 0.010 0.037
0.16 0.055 0.050 0.059 0.014 0.009 0.014 0.051 0.053 0.061 0.012 0.012 0.013

Exponential 0.005 0.452 0.449 0.738 0.229 0.189 0.486 0.457 0.527 0.735 0.229 0.285 0.481
distance 0.01 0.351 0.304 0.556 0.165 0.106 0.299 0.348 0.358 0.548 0.163 0.154 0.297

0.02 0.262 0.184 0.378 0.110 0.051 0.171 0.258 0.224 0.379 0.111 0.075 0.169
0.04 0.185 0.114 0.250 0.073 0.027 0.096 0.180 0.138 0.252 0.071 0.036 0.099
0.08 0.124 0.083 0.166 0.042 0.018 0.056 0.120 0.094 0.163 0.037 0.021 0.053
0.16 0.080 0.059 0.107 0.023 0.010 0.029 0.077 0.070 0.100 0.020 0.015 0.029

Triplets
No distance 0 0.995 0.996 1.000 0.949 0.969 1.000 0.966 0.998 1.000 0.962 0.991 1.000

Fixed 0.005 0.674 0.569 0.884 0.460 0.291 0.728 0.680 0.631 0.883 0.453 0.402 0.717
distance 0.01 0.491 0.253 0.646 0.309 0.087 0.415 0.485 0.293 0.643 0.297 0.123 0.405

0.02 0.318 0.117 0.430 0.178 0.032 0.237 0.313 0.134 0.423 0.171 0.044 0.231
0.04 0.189 0.070 0.265 0.094 0.018 0.135 0.177 0.080 0.255 0.088 0.021 0.128
0.08 0.102 0.053 0.141 0.038 0.010 0.057 0.098 0.059 0.142 0.035 0.013 0.061
0.16 0.046 0.049 0.050 0.010 0.011 0.015 0.041 0.053 0.049 0.008 0.012 0.011

Exponential 0.005 0.762 0.734 0.960 0.538 0.457 0.862 0.767 0.804 0.958 0.549 0.604 0.860
distance 0.01 0.610 0.497 0.826 0.388 0.232 0.615 0.608 0.580 0.821 0.379 0.336 0.608

0.02 0.436 0.294 0.599 0.253 0.099 0.363 0.435 0.350 0.590 0.244 0.153 0.354
0.04 0.289 0.162 0.390 0.144 0.043 0.202 0.282 0.188 0.384 0.134 0.063 0.197
0.08 0.171 0.096 0.226 0.068 0.021 0.096 0.166 0.104 0.223 0.064 0.026 0.090
0.16 0.091 0.062 0.115 0.027 0.013 0.036 0.091 0.066 0.115 0.025 0.013 0.035

geographical cluster size and location, as well as of the level of spatial aggregation
(i.e. the average county population size) in and around the cluster.

4.2. Global chain clustering

The power estimates for global chain clustering are shown in Table 3. When the dis-
tance is zero, all tests have good power but with a clear advantage for the maximized
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excess events test followed by the M statistic. As expected, the power goes down with
increasing distance between twins and between triplets, and approaches the nominal
signi8cance level at the greatest distance of r = 0:16. Note that the power is consis-
tently higher for the clustering models in which the distances between twins=triplets
are random according to the exponential distribution, as compared to the 8xed distance
model, even though the expected distances are the same.

5. Discussion

The results of this study clearly show how di(erent disease clustering tests are
good for di(erent types of alternative hypotheses. If one is interested in detecting
and evaluating localized clusters, it is better to use the spatial scan statistic, while the
maximized excess events test is better at detecting global type clustering that is present
throughout the study region. This is to some extent intuitive.

The maximized excess events test is based on the evidence of clustering found
throughout the map, as the test statistic is a summation over all the counties. When
a cluster is large in population size, it also performs well for hot-spot clusters, since
there is then a large proportion of the population that is a(ected by the cluster. The
test statistic uses geographical distance to de8ne closeness of cases. This may explain
why it has higher power for hot-spot clusters in urban as opposed to rural areas, as
the latter clusters are more dispersed. It also means that it may perform better for a
global chain clustering model where distance between twins are de8ned in terms of
geographical distance rather than the nearest neighbors. Although not shown here, a
feature of the maximized excess events test that is of great additional value is that it is
possible to determine how much each county contributes towards the total amount of
clustering observed, as represented by the magnitude of the test statistic corresponding
to that particular county (Tango, 2000).

The spatial scan statistic ignores all the information about the location of cases
except whether the case is inside or outside the currently evaluated circular zone.
The disadvantage of this is that the power is lower when clustering occurs through-
out the study region. An advantage is that the rejection can be wholly attributed to
a particular cluster, since any rearrangement of the cases outside the cluster can-
not reduce the value of the test statistic, no matter how the rearrangement is done.
This is discussed elsewhere in formal mathematical language (Kulldor(, 1997). By
use of circles, the power depends on the compactness of the cluster shape. The true
cluster need not be circular to obtain good power, but the test should not be ex-
pected to have good power for a long and narrow cluster, such as along the Hudson
river.

Hence, these two tests put weight on di(erent aspects of clustering, and we can
classify the spatial scan statistic primarily as a cluster detection test, and the maximized
excess events test as primarily a global clustering test. The di(erences between these
two types of tests have been discussed earlier (Kulldor(, 1998; Tango, 1999a), but this
is the 8rst time that the di(erence has been made clear through power comparisons
using di(erent types of clustering models.
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In the majority of cases, the M statistic had lower power than the other two. This
is a reTection of the alternative models considered. From a practical perspective, what
is important is to know how di(erent tests perform for di(erent types of alternative
models. We believe that there are alternative models for which the M statistic would
have the highest power among the three. For example, as a general nonparametric
statistic, the M statistic is similar in spirit to Kolmogorov’s statistic to test for a
sample’s being originated by a particular distribution. The M statistic is thus a global
clustering test for deviations from the assumed null spatial distribution, and it can be
expected to have reasonable performance over a large range of deviations from the null,
including the presence of long and narrow clusters. As one such example, a clustering
process that would produce several small clusters over the map would be harder to
detect for the spatial scan statistic since it would be far from the assumed probabilistic
model, while such a process might inTuence the interpoint distance distribution very
strongly and thus be easier to detect by the M statistic. This is suggested by the fact that
M statistic performs comparatively better for multiple as compared to single hot-spots,
and it may be the top performer for alternatives with more than three hot-spots. It is
important to keep in mind that any simulated power comparison is dependent on the
particular data set and alternative models used. Most tests will have relative strengths
and weaknesses for di(erent clustering models and no single test can have optimal (or
suboptimal) power for all alternative hypotheses.

For this study we used a data set typical of epidemiological applications, where both
the population and cases are aggregated into census areas of di(erent population size.
While all three test statistics can be used for either aggregated or non-aggregated point
data, the MEET was designed for the former, the M statistic for the latter and the
spatial scan statistic for both types of data in mind. The M statistic may hence have
been especially disadvantaged in this setting, and may be suspected to perform better
for nonaggregated data.

A limiting factor in this power evaluation is that only one set of spatially distributed
populations numbers was used, and the strength of various test statistics depends not
only on the alternative clustering models, but also on the spatial distribution of the ag-
gregated areas as well as the relative population sizes in these areas. For example, the
M statistic is designed to detect any deviation from the underlying population distribu-
tion of the interpoint distances. This seems to penalize it in the settings examined here,
and may be a consequence of the fact that the population distribution in the map is
driven by the population concentration in the east-coast corridor, so that the interpoint
distance distribution may not be a very informative summary of this population. The
presence of several peaks in that underlying population distribution have been found
to work in favor of this statistic (Bonetti and Pagano, 2001b).

In terms of di(erent number of cases, the comparative results were very similar
for 600 and 6000, respectively, so the sensitivity to this model parameter is of lesser
concern.

After rejecting the null hypothesis, concluding that there is some form of clustering,
it is of course of interest to know the exact nature of the clustering process. For
example, is it global type clustering or are there hot-spot clusters? If the former, do
the cases consist of twins, or triplets, or do they consist of small groups with a variable
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number of cases, or are all cases generated through one single process where each new
case generates another one? If the latter, how many hot-spots are there and where are
they located? It is important to note that the power estimates provided reTect the
power to reject the null hypothesis for whatever reason and that the probability of both
rejecting the null hypothesis and correctly determining the type of clustering process
is a di(erent matter.

Other scientists are encouraged to use the benchmark data sets presented in this
paper to evaluate disease clustering tests that they consider using, or to create new
tests that will perform better than those evaluated here. Existing tests of potential
interest include the k-nearest neighbors test (Cli( and Ord, 1973; Cuzick and Edwards,
1990), Swartz’ entropy test (Swartz, 1998), Besag–Newell’s R (Besag and Newell,
1991), the isotonic spatial scan statistic (Kulldor(, 1999), Grimson’s method (Grimson
and Rose, 1991), Martuzzi–Hills’ gamma method (Martuzzi and Hills, 1995), Oden’s
Ipop (Oden, 1995), Rogerson’s R (Rogerson, 1999), Ord and Getis’ max Gi (Ord and
Getis, 1995), Diggle–Chetwynd’s D (Diggle and Chetwynd, 1991) and Bithell’s M
(Bithell, 1999). It would also be worth investigating the maximized excess events test
with other weight functions aij(dij; �). Comparisons are of great interest regardless of
whether other tests turn out to have greater or lower power than those presented here,
as it will spread light on the question of what types of tests are good for what types
of clustering models.

This paper can be viewed as presenting only a 8rst batch of simulated benchmark
data sets for disease clustering test evaluations. Others investigators are encouraged
to contribute simulated data generated from other alternative hypotheses of interest.
Ideally, this will produce a collection of simulated benchmark data sets for the com-
munal use of all researchers in this area. Other clustering models to consider may be
(i) interior hot-spot clusters, (ii) hot-spot clusters with di(erent levels of risk in the
center and peripheral areas, (iii) a long and narrow hot-spot cluster, (iv) a very large
number of geographically small hot-spot clusters, say about one or two dozen, (v) a
global clustering model where each original case has a random number of ‘siblings’
rather than the 8xed number that we used, and (vi) a global double-chain clustering
model, with two separate disconnected chains covering two di(erent parts of the map,
such as the more rural and urban areas respectively, and with the strength of cluster-
ing being di(erent within the two chains. One could also use a Cox process (Cressie,
1993; Lundberg, 1940), where cluster locations and relative risks are random rather
than deterministic. The advantage of this is that the comparison of the test statistics
would reTect the average performance for a large group of di(erent hot-spot clusters.
The disadvantage is that one will not learn for what speci8c types of hot-spot clus-
ters a particular test statistic has high or low power. It would also be worthwhile to
create benchmark data sets for nonaggregated data sets, where each case has unique
coordinates.

There are many more tests for spatial clustering, and many more clustering models,
for which it is worth while to estimate power. We hope that other researchers will
build upon this work, and evaluate other tests using the clustering models used here
and, equally important, that they will generate and share simulated data from other
clustering models. Most importantly, with the existence of a set of benchmark data
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sets, each new power comparison does not need to start from scratch, but can build
upon previously calculated power estimates for already evaluated test statistics.

6. Appendix

Suppose we have a circle with radius one centered at (0; 0). The distance from (1; 0)
to the point on the circle corresponding to x degrees is√

(1 − cos x)2 + sin2 x =
√

2 − 2 cos x:

The distance to a point 22 percent along the circle is
√

2 − 2 cos (2*0:22) = 1:27. The
expected distance from (1; 0) to a random point on the circle is∫ 2*

0

√
2 − 2 cos x dx = 1:27:
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