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Abstract

In geographical spatial epidemiology and disease surveillance, all the existing spatial scan

methods for cluster detection using continuous data are designed for evaluating clusters of

individuals and analyzing individual-level data. Motivated by growing demands to study the

spatial heterogeneity of continuous measures in population data, such as mortality rates, survival

rates, average body mass indexes and pollution at state, county, and census tract levels, we

propose a weighted normal scan statistic for investigating the clusters of the cells (geographic

units such as counties) with unusual high/low continuous regional measures, where the weights

reflect the uncertainty of the regional measures or sample size (number of observed cases) in the

cells. Power, precision, the effect of the weights, and the sensitivity of the proposed test statistic

to data from various distributions are investigated through intensive simulation. The method is

applied to 1988-2002 stage I and II lung cancer survival data in Los Angeles County in order to

search for clusters of geographic units with high/low survival rates in a short-term/long-term

survival after diagnosis, and to 1999-2003 breast cancer age-adjusted mortality rate data in the

US collected by the Surveillance, Epidemiology and End Results (SEER) program in order to

evaluate the clustering pattern of counties with high mortality rate. The proposed method will

be included in the new release of SaTScan software (www.satscan.org).

Keywords: weighted normal spatial scan statistic, cluster detection, geographic variation,

continuous regional data, lung cancer survival, breast cancer mortality
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1 Introduction

With the wide availability of geographical information systems, there is an increasing interest in

the geographical aspects of disease, which has inspired the development of statistical methods

for spatial epidemiology. Most of the time, the interest is in the geographical distribution of

individuals with different disease status. For example, we may want to know the geographical

distribution of prostate cancer survival. An area with shorter survival could, for example, reflect

a higher proportion of a more aggressive form of the disease due to personal genetic or localized

environmental factors, or it could reflect a local hospital with substandard care. There exist a

large number of spatial cluster detection methods for analyzing such individual data, depending

on the nature of the data, such as dichotomous variables for prevalence of cases and controls,

Poisson variables for incidence or mortality (Duczmal and Assunção 2004; Kulldorff, Huang,

Pickle and Duczmal 2006; Patil and Taillie 2004; Kulldorff 1997; Turnbull, Iwano, Burnett,

Howe and Clark 1990 ), ordinal variables for cancer stage or histology (Jung, Kulldorff, and

Klassen 2007), and continuous variables for length of survival (Huang, Kulldorff, and Gregorio

2006) or for birth weight or BMI (www.satscan.org). There are also other types of analysis, such

as disease mapping (Lawson, Browne, and Widal Rodeiro 2003; Richardson, Thomson, Best,

and Elliot 2004; Besag, York, and Mollie 1991; Knorr-Held and Rass 2000), cluster evaluation

around a prespecified point source (Diggle’s D (Diggle 1990), Lawson-Waller’s Score test (Waller,

Turnbull, Clark and Nasca 1992 and Lawson 1993), Bithell’s linear rank score test (Bithell

1995), Isotonic regression (Stone 1988), and evaluations of global clustering throughout the

map (Moran’s I (1950), Tango’s statistics (1995 and 2000), Besag Newell’s R (1991), Oden’s

Ipop (1995)).

Sometimes the interest is not at the level of individuals, but in the geographical distribution

of a continuous variable at some aggregate level. For example, each hospital has an average

length of survival for their prostate cancer patients, and we may want to know if hospitals with

shorter survival times are located close to other hospitals with short survival times. If we have
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near perfect measures about the average survival from each hospital, with negligible error, then

we can use the same statistical methods as for individuals with a continuous outcome variable.

If the sample size is the same for each hospital, we could also use the established methods

for continuous data. The problem occurs when we have different sample sizes for different

hospitals, and we then have to take this variable uncertainly by hospital into account when

doing the analysis for cluster detection. That is the focus of this paper.

There are several other types of application of this kind. For example, rather than studying

the prevalence of smoking in individuals, we may be interested in the geographical distribution

of low and high prevalence of smoking in schools. As another example, we may view each

county as having a certain risk of breast cancer, and we want to know if there are any clusters of

neighboring counties with high breast cancer risk, which is a very different question compared

to whether there are any clusters of individuals with breast cancer, even though the counties

included in the two types of clusters could be the same. As a third example, consider air

pollution measurements from a number of distinct sites. If we have only one measurement from

each site, those are individual measurements and can be analyzed using existing methods for

continuous data, treating each site as an individual. If we have a number of measurements from

each site, we need to take the variances into account when looking for geographical differences

of the average pollution level in the sites rather than in the individual measurements.

While earlier methods for individual data have considered observations from both categorical

and continuous variables, at the average level we are typically interested in continuous data. We

develop a new spatial scan statistic, such as the weighted normal scan statistic, that accommo-

dates continuous data with varying regional reliability/uncertainty within each geographic unit

(such as county). Specifically, we develop the statistic for cluster detection on a regional measure

for location z using a weight δz (the inverse of the uncertainty) associated with location z, to

adjust for the uncertainty of the observed wz value. The cluster detected is then the collection

of geographic units (cells) with high/low regional measures that directly reflects the behavior of
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the cells, instead of the individuals inside cells.

The difference between the methods developed in this paper and previous methods for con-

tinuous data is not whether data are available at one level or the other, but in the scientific

question being asked. Is the interest in the geographical distribution of individual observations

or in the geographical distribution of some unknown underlying variables at an aggregate level,

which can only be estimated through a sample of individual observations? In fact, the exact

same data can be used for both types of analyses, with very different results due to very different

questions being asked from the data. This problem arises in population-based data, where, due

to confidentiality concerns, researchers can not have access to individual-level information and

have to rely on the estimates based on regional level data. In this case, the hypothesis that they

can investigate is limited to the behavior of the regions. Note that in the analysis of individual

risk, both individual case and control data, and aggregated Poisson count data can be used.

However, aggregated survival time or BMI or pollution measures do not allow the analysis of

individual behavior but only the regional behavior. The distinction is that counts can be aggre-

gated but often still motivate studies of individual attributes, while the others represent average

values.

The weight δz, for each z, in the construction of the scan statistic (more details are in Section

2) is assumed to be a known measure proportional to the inverse of the uncertainty in each z. For

example, in pollution data, we may record different values of a pollution measure from several

locations and different time points within one geographic unit (cell) and report the averaged

(perhaps through geostatistical methods) value by cell as the final reporting measure wz. We

also record the variance of the reporting measure as the uncertainty of the cell. From a complex

survey, we may obtain the regional BMI values and associated variances from some weighting

procedure. In case of survival analysis, we may obtain the k-year (e.g., k = 1, 3, 5, 10) survival

rates, the wz’s, using methods such as the LifeTable method or the Kaplan-Meier method, and

the variances of the rates for each z, using Greenwood’s method (Armitage and Berry 1994). In
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mortality rate analysis, we can obtain the direct and indirect age-adjusted mortality rates and

associated variances in each z from SEER*Stat (http://seer.cancer.gov/seerstat/). In the above

cases, the related weights δz could be taken to be the inverse of the variances of the wz’s. In

practice, we may not always have a large sample size in each z to obtain a reliable estimate of the

variance in each cell. For example, if there is one individual measure recorded in a geographic

unit z, the variance is not estimable. Also, if there are no deaths observed in a particular period

in z, the variance of the survival rate for that period is zero. In such situations, we may use

population size or sample size (i.e., the number of cases observed) as a proxy for the inverse of

variance.

The rest of the paper is organized as follow. The weighted normal scan statistic is developed

in section 2.1. The performance of the proposed scan statistic on varying data is evaluated using

simulation studies, and discussed in section 3. The application of the method on the survival

rates of stage I and II lung cancer in Los Angeles County and the breast cancer age-adjusted

mortality rates in US are given in section 4. The paper ends with a discussion in section 5.

2 Weighted Normal Scan Statistic

We construct the weighted normal scan statistic based on the likelihood ratio test theory, with

the likelihood incorporating the weights and location information. We maximize the likelihood

over the search zones (Z’s), where each Z is an arbitrary zone including a collection of cells (z)

in the whole study region G.

2.1 Weighted Normal Likelihood and MLEs

First, we assume that the weight δz, associated with wz, is an inverse function of the regional

uncertainty measure of wz in z. For example, if wz represents the average of individual BMI

values in z (county) from a complex survey, the weight δz can be taken as the inverse of the

estimated variance provided by those different data sources. For a particular zone Z, we assume
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that wz|δz ∼ N(µZ ,
σ2

G

δz
), when z ∈ Z and wz|δz ∼ N(µZc ,

σ2
G

δz
), when z ∈ Zc(= G − Z). Here,

µZ and µZc are the means of the measurements in and out Z respectively, σ2
G/δz(= σ2

wz
) is the

variance of wz (z ∈ G) after adjusting the local weight δz. Thus, given δz, the wz’s are assumed

to be independent and normally distributed with the same mean but different variances in a

particular Z. The likelihood function for an arbitrary zone Z in G is

L(µZ , µZc , σ2
G) ∝

∏

z∈Z

√
δz

σG
exp(− δz

2σ2
G

(wz − µZ)2)
∏

z/∈Z

√
δz

σG
exp(− δz

2σ2
G

(wz − µZc)2), (1)

and its logarithm is

ln(L(µZ , µZc, σ2
G)) ∝ −1

2

∑

z∈G

[ln(
σ2

G

δz
)]−

∑

z∈Z

[
δz

2σ2
G

(wz − µZ)2] −
∑

z∈Zc

[
δz

2σ2
G

(wz − µZc)2].

The maximum likelihood estimates (MLEs) for µZ , µZc and σ2
G are µ̂Z =

∑
z∈Z(δzwz)∑

z∈Z δz
, µ̂Zc =

∑
z∈Zc(δzwz)∑

z∈Zc δz
, and σ̂2

G =
∑

z∈Z δz(wz−µ̂Z)2+
∑

z∈Zc δz(wz−µ̂Zc)2

nG
, respectively. Thus, the variance for wz

inside/outside Z, given the weight δz, is estimated as

σ̂2
wz

=
σ̂2

G

δz
=

∑
z′∈Z δz′(wz′ − µ̂Z)2 +

∑
z′∈Zc δz′(wz′ − µ̂Zc)2

nGδz
,

where nG is the total number of z’s in G, and z′ denotes a distinct geographical cell index from

z. So for a given Z, the loglikelihood function is maximized at

Ln(L(µ̂Z , µ̂Zc, σ̂2
G)) ∝ −

∑

z∈G

ln(

∑
z′∈Z δz′(wz′ − µ̂Z)2 +

∑
z′∈Zc δz′(wz′ − µ̂Zc)2

nGδz
) − nG

∝ −
∑

z∈G

ln(
∑

z′∈Z

δz′(wz′ −
∑

z′∈Z wz′δz′∑
z′∈Z δz′

)2 +
∑

z′∈Zc

δz′(wz′ −
∑

z′∈Zc wz′δz′∑
z′∈Zc δz′

)2) +
∑

z∈G

ln(nGδz) − nG

(2)

Maximizing the loglikelihood ln(L(µ̂Z , µ̂Zc, σ̂2
G)) is equivalent to maximizing the expression

in equation (2). Because the summation
∑

z∈G is independent of Z, maximizing (2) is equivalent

to maximizing

−ln(
∑

z∈Z

δz(wz −
∑

z∈Z

δz∑
z∈Z δz

wz)
2 +

∑

z∈Zc

δz(wz −
∑

z∈Zc

δz∑
z∈Zc δz

wz)
2). (3)
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In equation (3), the log function is a monotone function. Therefore, maximizing (3) is equivalent

to maximizing

− (
∑

z∈Z

δzw
2
z −

(
∑

z∈Z δzwz)
2

∑
z∈Z δz

) − (
∑

z∈Zc

δzw
2
z −

(
∑

z∈Zc δzwz)
2

∑
z∈Zc δz

) (4)

= −
∑

z∈G

δzw
2
z +

(
∑

z∈Z δzwz)
2

∑
z∈Z δz

+
(
∑

z∈Zc δzwz)
2

∑
z∈Zc δz

(5)

The first term in equation (5) is independent of Z. Therefore, maximizing
(
∑

z∈Z δzwz)2∑
z∈Z δz

+

(
∑

z∈Zc δzwz)2∑
z∈Zc δz

over the Z’s is essentially maximizing the loglikelihood ln(L(µ̂Z, µ̂Zc , σ̂2
G)) and the

likelihood L(µ̂Z , µ̂Zc, σ̂2
G). This simple expression in equation (5) without the first term will

be used to construct the likelihood based spatial scan statistic in section 2.2. Note that µ̂Z is

unbiased since

E(µ̂Z) =
1∑

z∈Z δz

∑

z∈Z

[
δzE(wz)

]
=

1∑
z∈Z δz

µZ

∑

z∈Z

(δz) = µZ , (6)

and, similarly, µ̂Zc is also unbiased. However, since

E(σ̂2
G) = E

1

nG
[
∑

z∈Z

δz(wz − µ̂Z)2 +
∑

z/∈Z

δz(wz − µ̂Zc)2] =
nG − 1

nG
σ2

G, (7)

σ̂2
G is asymptotically unbiased when nG is large. When µZ = µZc = µG, the MLEs become

µ̂G =
∑

z∈G(δzwz)∑
z∈G δz

, and σ̂2
G =

∑
z∈G δz(wz−µ̂G)2

nG
. One can increase the nG by subdividing the cells

into smaller cells but with different δz (for example, subdivide county into census tracts), or

simply enlarging the whole study region G (for example, if the G is the state of Washington with

county as cell, we can add more counties from Oregon into the study region). The asymptotic

property in equation (7) is still valid for both cases with large nG, but the σ2
G on the right side

of the equation will be different from that in the original data when we change the data in either

way.

In this section, we obtained closed forms of the MLEs for the parameter estimates. It was

also shown that the maximum likelihood over different search zones Z’s can be expressed in

a simple closed form. These results help us to derive the spatial scan statistic, based on the

likelihood ratio, which is analytically tractable and computationally feasible.
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2.2 Spatial Scan Statistic and Hypothesis Test

Let Z be an arbitrary zone in G. The zones could have shapes of circles, ellipses, and irregular

shapes with varying geographic size. We use zones with circular shapes with varying radius

in our analysis and any z whose centroid is in a circular area belongs to a particular Z. We

maximize the likelihood or log likelihood over the zone Z’s in the whole study region G under

both the null and alternative hypotheses, which is the same irrespective of the shapes used for

the zones Z. The null hypothesis is that the mean of wz, z ∈ Z is homogeneous in G so that

µZ = µZc = µG for any Z ⊂ G.

Define θZ = (µZ, σ2
G) and θZc = (µZc , σ2

G), where Z ⊂ G. The likelihood for a given zone Z is

written as L(θZ, θZc) =
∏

z∈Z L(θZ)
∏

z∈Zc L(θZc). Given Z, the estimated maximum likelihood

is L(θ̂Z, θ̂Zc), where the MLEs θ̂Z and θ̂Zc are computed using the method described in section

2. The likelihood ratio test statistic for null H0 : µZ = µZc = µG vs. alternative Ha : µZ 6= µZc ,

for any zone Z, is written as

λ =
maxZ,µZ 6=µZc ,σ2

G
L(θZ, θZc)

maxZ,µZ=µZc ,σ2
G

L(θZ, θZc)
=

maxZ,µZ 6=µZc ,σ2
G

L(θZ , θZc)

L0

=
L(Ẑ)

L0

, (8)

where L0 depends on µ̂G and σ̂2
G and is independent of the search zone Z. Therefore, the λ is

maximized when the likelihood L(θZ, θZc) in the numerator of equation (8) is maximized. And

maximizing L(θZ , θZc) under the alternative hypothesis is equivalent to maximizing the equation

(5) over all search zones Z’s.

For the alternative Ha : µZ > µZc, the test statistic becomes

λ =
maxZ,µZ>µZc ,σ2

G
L(θZ, θZc)I(µ̂Z > µ̂Zc)

maxZ,µZ=µZc ,σ2
G

L(θZ, θZc)
, (9)

which identifies the clusters with unusual means higher than those outside the clusters. Similarly,

to test Ha : µZ < µZc , we use the indicator function I(µ̂Z < µ̂Zc) in the numerator of λ to identify

the clusters of measures with unusually small mean values.

Constraints can be set on the maximum and minimum size of Z. We normally restrict the

maximum size of Z to be less than 50% of the total number of z’s or 50% of total population in
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G and the minimum size of Z to be at least two cells. The constraints on both the maximum

and minimum sizes depend on the purpose of the study or the features of the data.

As there is no closed form for the distribution of λ, a Monte Carlo hypothesis testing

procedure is employed, wherein M datasets are generated by random permutation (the pairs

(wz, δz), z ∈ G, are randomly moved among the existing geographical locations). Note that

moving (wz, δz), z ∈ G together keeps the maximum likelihood estimate of the overall mean

µ̂G =
∑

z∈G δzwz∑
z∈G δz

invariant with respect to the permutations. The M datasets are called the null

datasets without spatial clustering of cells with high/low means because we randomly move the

pairs (wz, δz) around. The M + 1 values of the statistic λ’s are computed for the observed and

permuted datasets. At the α-level, H0 is rejected if the rank of the λ obtained from the observed

data is among the α(M + 1) largest λ’s, and the p-value is 1 − rank
M+1

(Dwass 1957). Note that

we used random permutation to generate the null datasets instead of simulation, because we do

not know what are the true common mean and variance for the null datasets. If we use a set

of pre-estimated means and variances (µ̂G and σ̂2
G) from the whole observed data to simulate

null datasets from a normal distribution, our alternative hypothesis would be µZ 6= µ̂G instead

of µZ 6= µZc. Furthermore, since the permutation procedure does not require a distribution as-

sumption in order to generate the data under the null hypothesis, the procedure is more robust

to data with varying continuous distributions. In this way, the permutation procedure maintains

the correct α level error if the observations do not come from a normal distribution. Therefore,

for evaluating the spatial homogeneity of the means in G, it is more appropriate to use random

permutation procedure.

Note that the random permutation testing procedure does not have power to detect a clus-

ter consisting of a single geographic unit z because the permutation procedure randomly moves

the locations of the measures, but does not change the values of the measures. After the ran-

dom relocation, the spatial clustering patterns among cell measures are removed, but unusually

high/low values in cells remain the same in the permuted datasets. This is reasonable because we
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are looking for clusters of cells, instead of clusters of individual cases within a single geographic

unit or across cells.

The zone Z that maximizes the likelihood under the alternative hypothesis in (8) is the most

likely cluster, that is, the cluster that is least likely to be due to chance. We denote the value

of λ associated with this particular Z by λ(1). If the p-value associated with λ(1) is less than α,

Z is significantly different from the areas outside Z(Zc).

We can also find the zones that do not maximize the likelihood under the alternative hy-

pothesis in (8), but provide the 2nd maximum likelihood, the 3rd maximum, etc., by allowing

the denominator to remain the same in (8), and the numerator being the 2nd maximum, the

3rd maximum, and so on. Note that the zones must be mutually exclusive. We define the

corresponding values of statistic λ as λ(2), λ(3), and so on. These are called secondary statis-

tics. Comparing the λ(s), s > 1, from the observed data with the M λ(1)’s from the permuted

datasets, if the rank of the λ(s), s > 1, is still among the α(M + 1) largest λ’s, we reject the H0

even without the presence of the most likely cluster, and we claim that those associated zones

are statistically significant secondary clusters.

3 Power and Precision of Cluster Detection

A simulation study is conducted to understand the performance of the proposed weighted normal

scan methods, described in section 2, on continuous data in terms of power and precision of

cluster detection. We only evaluate the detection of a single cluster with higher mean value

compared with those outside. The alternative hypothesis is Ha : µZ > µZc for at least one Z,

and therefore, the computation of the statistic includes I(µ̂Z > µ̂Zc). We fixed the number of

permutations for each simulated dataset to be M = 999.

We simulate continuous grid data in a 10×10 matrix of cells, which represents 100 geographic

units (z) in the whole region. We do not simulate data in a real map with cells as counties or

census tracts because of computational time restrictions. The true cluster Z∗ is defined to be the
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circular area with center at (row=3, column=6) and radius of length 2. Any cell, whose center

is in the circular area, belongs to the true cluster. Note that the selection of the cluster location

is random. However, if the cluster center is on the border of the study region, the power may

be a little bit lower because of the edge effect. There are a total of 13 cells included in the true

cluster area out of the 100 cells. To evaluate the change in power of the proposed statistic λ as a

function of mean difference inside/outside the selected cluster region, without loss of generality,

we simulate wz from N(0,1) outside the selected cluster, and from N(0 + c
√

2, 1) inside the

cluster, with c = 0.5, 1, 1.5, 2, 3 (Table 1, Case 1). Note that c can be interpreted as the number

of standard error units of the difference between the means of the wz’s in and outside Z. Also,

to understand the effect of weights, we simulate data from N(0,1) outside the true cluster, and

from N(0+1.5
√

2, 1) inside the true cluster, and let the weight δz(= η) = 1, 2, 4, 8, 10, 100, 1000.

Table 1 gives the simulation results for cases with different mean differences inside/outside the

true cluster and varying weights.

Robustness of the developed methods to varying distributions is also of interest. Therefore,

we simulate data not only from the normal distributions, but also from the double exponential

(DoubleE), logistic, uniform, lognormal and Poisson distributions as shown in Table 2. The

means and variances for DoubleE, logistic and uniform distributions are taken to be the same

as those for the normal distributions. For the lognormal distribution, since it can not have a

zero mean, we let the mean outside the cluster be 2 instead of 0. The mean difference, c
√

2, and

the variances in lognormal distributions are set to be the same as those in normal distributions.

For Poisson distributions, since the mean equals the variance (> 0), we simulate data from

Poisson(1) outside of the true cluster, and from Poisson(1 + c
√

2) inside the true cluster. The

variability of the Poisson data is then bigger than the data from other distributions.

The criteria for evaluating the performance of the weighted normal scan method in the

simulation are power of rejecting the null hypothesis of µZ = µZc , for any zone Z ∈ G when

the data are generated from varying alternatives (µZ > µZc); the proportion of detected cluster
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in the true cluster (rT ); and the proportion of the true cluster in the detected cluster (rD). We

calculate the three measures through simulation as follows:

power =
number of simulations with p-value <0.05

L
,

rT =
1

L

L∑

l=1

number of common cells in true and detected clusters in lth simulation

number of cells in the true cluster
,

and

rD =
1

L

L∑

l=1

number of common cells in true and detected clusters in lth simulation

number of cells in the detected cluster in lth simulation
,

where L(= 1000) is the total number of alternative datasets simulated in each scenario.

The last two measures, rT and rD, are for evaluating the precision of the cluster location

detection. The rT evaluates sensitivity and rD evaluates positive predictive value (PPV). The

values of rT and rD are between 0 and 1, and larger values of rT and rD together imply higher

precision of detecting the right location of the true cluster. However, a large value of rT and a

very small rD together does not mean good precision, and vice versa.

Effect of mean difference

As shown in Table 1 (Case 1), as the mean difference (c
√

2) increased, the power and precision

measures (rT and rD) increased. The power reaches close to 100% when the mean difference is

1.5
√

2 or bigger. When the power reaches 100%, both rT and rD are close to 1.

Effect of weights

The effect of the varying weights is evaluated by considering the weight values and the

location of the weights. Large variation in weights introduces large regional variability for wz

because σ2
wz

= σ2
G/δz. We evaluate the effect of weights by increasing the values of weights from

1 to 1000, and also by allowing the high weights to be assigned to one cell (6,3), or several cells

including 3 or 5 cells inside true cluster, or in the z’s in a bigger area (inside/outside the true

cluster including 13 cells).

Overall, when the variation of weights (δz = η) increased, the power and precision measures

declined (Case 2a, 2b, 3, and 4). We also note that when the cells in the true cluster area
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with very high values of wz have low variability or large sample size, we still have the power to

detect them when weights are included in the formulation of the statistic. But when the cluster

of unusual values has large variability or small sample size, the power of detecting this cluster

becomes very low when weights are considered. This is actually the purpose of adding weights

into the scan statistic λ; that is, we want to avoid detecting a cluster that is unreliable with very

small sample size (observed cases). The precision is generally good when the power is above

70% (both sensitivity and PPV are high).

Effect of variance of wz in and out the true cluster Z∗

For Case 5 in Table 1, we notice the decreasing patterns in power and precision measures

when η increases. Therefore, a high variance in wz, z ∈ G is associated with lower power of

detecting the cluster and lower precision. The rD (PPV) becomes bigger than rT (sensitivity) as

the variance in the cluster increased, which implies that the detected cluster size is decreasing.

However, most of the detected cluster is still in the true cluster region. Even for η = 1000, the

rD is not very low (0.67).

Sensitivity to varying distributions

From Table 2 and Figure 1 (A, B, and C), the weighted normal scan statistic given in

equation (9) is very robust to varying distributions of the continuous measure wz. For the

homogeneous weight case (δ = 1 in all cells), the graphs of power vs. c shows that only the data

from Lognormal and Poisson distributions are different with the others. It is not surprising that

Poisson data have the lowest power, because the Poisson data are counts with larger variance.

The precision measures, rT and rD, show similar patterns as that of the power, and with bigger

difference in rT (sensitivity) and less difference in rD (PPV) across the distributions.

When we fixed the mean difference to be 1.5
√

2 and allowed the weight in the center of the

cluster to vary from 1 to 1000, we noticed that the power for the data from all the distributions

decreased slightly with the Poisson distribution having the greatest difference (Figure 1D, 1E

and 1F).
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4 Applications

4.1 Spatial Clustering of Short-Term and Long-Term Lung Cancer

Survival Rates in Los Angeles County

The exponential-based scan statistic (Huang et al. 2006) and semiparametric scan statistic

(Cook, Gold and Li 2007) searches for the clusters of individuals with high or low mean survival

time during the study period and compare the likelihood function that is based on the survival

data for all follow-up years (i.e., the entire survival curve). The spatial pattern in survival

rates may also vary for different survival times (e.g., 1 year, 3 years, 5 years) because of the

progression of the disease and the impact of screening and treatment during different parts

of the survival (short term and long term); for example, new treatments may impact early

survival, but the survival advantage may not persist over time. In this case, the interest is not

to compare the whole survival curve and the overall average survival time, but to compare the

geographic patterns of the survival rate at a point on the survival curve. The new weighted

normal scan method is an ideal tool for this kind of study in searching for clusters of cells

(not individuals) with unusual survival rate in short-term follow-up and long-term follow-up,

separately. With more flexibility, we can estimate the survival rates using any of the existing

methods such as nonparametric Kaplan-Meier or LifeTable methods (Klein and Moseschberger

1997), a semiparametric model (Cox 1972), a parametric model including exponential model

(Klein et al. 1997), or a cure model (Yu, Tiwari, Cronin and Feuer 2004).

We first use the Kaplan-Meier (KM) method to estimate the k-year survival rates and asso-

ciated variances (k=1, 3, and 5) by medical service study areas (MSSAs) (California Office of

Statewide Health Planning and Development, 2005) and by census tracts on the survival data

with individual survival information in Los Angeles (LA) County for stage I and II lung cancer

cases diagnosed in 1988-2002 with follow-up to 2002. We use the same survival data described

by Huang, Pickle, Stinchcomb and Feuer (2007), where they analyzed the spatial variation of

mean survival time for individuals by an exponential model based scan model. The data include
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a total of 9,242 stage I and II lung cancer cases diagnosed in LA County, with 60% of the cases

censored by the end of follow-up. There are 2054 tracts and 100 MSSAs in LA County. The

MSSAs are aggregations of tracts based on the supplies of medical service. We use the two

kinds of cells to illustrate the performance of the methods on a limited number of large cells

(MSSA), versus a large number of smaller cells (tracts). The advantage of working with smaller

size areas is that we can more precisely specify the location of a cluster. Also note that one of

the major differences between the MSSA and tract analyses is that the cluster detected in the

MSSA analysis is the collection of the MSSA areas with similar rates and reflects the clustering

behavior of the MSSA areas; however, in the tract analysis, the clustering pattern of tracts is

evaluated. Even though they may provide similar cluster locations with high/low survival rates

and both have geographic units (cells) as the study subjects, the meaning of the cluster is not

exactly the same.

If there are no deaths observed beyond 5 years due to small sample size in some MSSAs and

tracts, we assume that the survival probability remains the same after the time of the last death

observed in a particular MSSA or tract (last point carry-over). The sample size, here, is the

number of cases diagnosed with stage I and II lung cancer during the study period in a specific

cell (MSSA or tract). Because of this last point carry-over approach, the survival rate may be

overestimated in a cell with small sample size and large proportion of censoring. Obviously, with

a total of 9,242 cases, sample size is not an issue for most of the 100 MSSAs, but we do have

very small sample sizes for tracts and the existence of overestimation. As discussed in the earlier

sections, we can use the weight to reduce the effect of the areas with unreliable overestimated

survival rates. The tracts without any cases observed are treated as empty areas. Thus, there

are 1885 tracts used in our analysis after the exclusion of 6 empty tracts. This will still result in

good estimates on the survival rates in the areas covered by the search window with aggregation

of tracts. The advantage of doing the analysis at a very small level like the tract-level is that

the statistical technique employed will aggregate the tracts rather than having pre-formed cells
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such as the MSSAs.

As described above, we estimate 1-year, 3-year and 5-year survival rates by MSSA and by

tract in LA County. We then apply the weighted normal models on wz, the estimated k-year

survival rates, to study the spatial variation of the rates. At the tract-level, the variances of the

k-year survival rates in z’s are not available for 981 tracts when k is 1, for 839 tracts when k

is 3, and for 1052 tracts when k is 5. We lose a lot of locations if we use weights as inverse of

the variances in tracts for studying the spatial clustering pattern of the k-year survival rates.

However, the sample size is available for all the 1885 tracts, and thus we use the sample size

at tract-level as a substitute for the inverse of variance as the weight. We use both the sample

size and inverse of the variance of the rates in each z as the weight in the MSSA analysis. The

minimum cluster size is selected to be two MSSAs and 10 tracts, respectively, and the maximum

is 25 percent of the total locations (either MSSA or tracts). Note that as mentioned earlier,

both the minimum and maximum size can be changed according to the research interest.

The detected clusters are shown in Figure 2. The cell is MSSA in Figures 2A-2B, 2D-2E, and

2G-2H, and tract in Figures 2C, 2F, and 2I. The weight is inverse of variance in the 1st column,

and sample size in the 2nd and the 3rd columns. We present the clustering pattern for 1-yr

survival in Figures 2A-2C, for 3-yr survival in Figures 2D-2F, and for 5-yr survival in Figures

2G-2I. The summary information of the clusters is shown in Table 3a and 3b. The clusters

detected in the 1st column of maps in Figure 2 are similar to the ones in the 2nd column, which

shows that using sample size (observed cases) as the weight provides similar results to using

the inverse of the variance as the weight in this situation. We calculate the k-year survival rate

inside/outside the clusters using the KM method directly on the individual survival time data.

The 1-year survival rate is 0.85 for the high survival rate cluster, 0.76 for the low survival rate

cluster, and 0.81 for the cells outside these clusters in Figure 2C. The 3-year survival rate is

about 0.68 for the high survival rate cluster, 0.51-0.54 for the low survival rate cluster, and

0.6 for cells outside the detected clusters in Figures 2D-2F. The 5-year survival rate is about
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0.58-0.60 for high survival rate cluster, 0.43 for low survival rate cluster and 0.51 outside the

detected clusters in Figures 2G-2I.

At tract-level, we detect significant high and low rate clusters of 1-year survival; however,

there is no cluster of high/low 1-year survival rate detected at MSSA level. This implies that

large cells (like MSSAs) with bigger sample size may provide more reliable estimates of the

survival rate by the cell, but we lose some power in detecting significant spatial variation because

a part of the variation is smoothed out inside the cell. Usually, when using spatial scan method

searches through the cells, having more cells in the whole study area provides more flexibility

in the location of the clusters and yields in better power.

One concern is that the estimates of the survival rates at tract level might be too variable

because many tracts have only one or two cases diagnosed and no deaths observed in the study

period. Using sample size as the weight, the new spatial scan method gave more weight to

the wz’s in those areas with more reliable estimates (usually areas with large sample size) and

compared the weighted average of the estimated survival rates inside/outside Z (µ̂Z =
∑

z∈Z δzwz∑
z∈Z δz

).

If one is worried about the high percentage of censored cases, one can use the observed number

of deaths instead of the number of diagnosed cases as weights. The weighting process adjusts for

differences in reliability and allows better comparisons. As shown in Table 3a, the estimates using

the weighted average are always bigger than those from direct KM methods (overestimation)

for tract analysis. The differences between the weighted means and the KM estimates for tract

analysis are close to those for MSSA analysis in the 3-year survival rate analysis, and slightly

bigger for the 5-year survival rate analysis. This suggests that we can work with the cells with

small sample size in cluster detection studies. This message is also supported by observing the

similar spatial patterns with high or low survival rates in the maps with both MSSA as cell and

tract as cell.

The spatial pattern of the survival rates in this study is consistent with the pattern discovered

in Huang et al., 2007. In Table 3b, we summarize the information on race and sex from the
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SEER data we used for the survival analysis. The information on SES (social economic status)

are from the 1990 census because we are more interested in the socioeconomic condition that the

patients experienced both before and after diagnosis (1988-2002). There is no good summary

statistic for smoking at tract level in US population data, so smoking status is not included in

this analysis even though smoking is a well known risk factor for survival of patients with lung

cancer. As shown in Table 3b, high survival rate clusters are located around the areas with

high social economic status (high median income, more people with advanced education, higher

percent of home owners, more people with health insurance, less people living below poverty

level). They are in the western and northwestern portion of LA County. Low rate clusters are

in the south LA County, around the low SES areas with more blacks and more males.

Our analysis also reveals that there is less spatial variation for 1-year survival rates. The

difference between the survival rates between high rate clusters and low rate clusters is smaller

for 1-year survival compared with 3-year and 5-year survival cases in the tract level analysis.

Spatial clusters of high or low rates are only found for 3-year and 5-year survival rates in the

MSSA analysis. The p-values for the clusters in 3-year and 5-year survival rates are much

lower (< 0.001) than the ones (0.016 and 0.008) for clusters of 1-year survival rate in the tract

analysis. We observe the location change of clusters of high rates (3-year to 5-year) from west to

northwest in Figure 2 (2E to 2H and 2F to 2I), which implies that some regions in south western

LA County may have better short and middle-term survival, but lose advantage in long-term

survival (5-year survival). The locations of the low survival rate cluster remain almost the same

in all the survival maps. The numbers in Table 3b for the cluster of high survival rates at tract-

level reveal that the income, percent of home owner, percent of people with health insurance

increase, and the percent of poverty, and blacks decrease when the high rate cluster changes from

2C to 2F, and to 2I. However, percent of advanced education and gender do not have consistent

patterns when the high rate cluster changes the locations. The areas in the 3-year high rate

cluster (in 2F), but outside the 5-year high rate cluster (in 2I), indicated in parenthesis, have
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much lower median income compared with the values in the 5-year high rate cluster (40K vs.

51K), much lower percent of home owners (43% vs. 58%), much lower percent of people with

health insurance (25% vs. 30%), more poor people (11% vs. 8%), and much more blacks (25%

vs. 2%) as shown in Table 3b. While not a formal statistical test, these comparisons suggest

that income, insurance, and race may play a bigger role on the long term advantage in the stage

I and II lung cancer survival in the related areas.

4.2 Geographic Variation of Breast Cancer Mortality in US

Breast cancer is one of the most common cancers in the United States, and currently the

second leading cause of cancer death in females (American Cancer Society 2007). The mortality

rate for breast cancer has been declining since the middle of the 1990s (report to nation-2005

update). Beside the temporal trend and variation, the spatial heterogeneity of the breast cancer

mortality is also of interest to epidemiologist and policy makers (Canto, Anderson and Brawley

2001 1998; Goodwin, Freeman, Mahnken, Freeman and Nattinger 2002; Jacquez and Greiling

2003; Sheehan et al., 2004). Here, we will apply the weighted normal scan method on the breast

cancer mortality rate data to evaluate the geographic variation of rates in the US in terms of

clustering of counties.

4.2.1 Applying the Weighted Normal Model on Rates

Note that the mortality rates are usually adjusted for age to avoid the confounding of age effect.

There are two kinds of age-adjusted rates, namely direct and indirect (Curtin and Klein 1995).

We briefly describe the calculation of the two measures and related variance in the following.

The direct age-adjusted cancer rates (DAR) can be written as

DARz =

J∑

j=1

γj
dzj

nzj
,

where dzj and nzj are the number of cancer deaths and the mid-year population for the age-

group j and the location z (e.g., tract, county or state), respectively, and the γj(=
psj∑
j psj

) are the

20



normalized proportion of mid-year population for the age-group j in the standard population

(psj), so that
∑

j γj = 1. Let dj =
∑

z∈G dzj and nj =
∑

z∈G nzj . Also, let γzj =
γj

nzj
. Assuming

that dzj are Poisson counts, the variance for the direct rate in z is, var(DAR)z =
∑J

j=1 γ2
zjdzj

(Kim, Fay, Feuer and Midthune 2000).

The indirect age-adjusted rate (IAR) is defined as

IARz = (
dz∑

j csjpzj
) × (

ds

ps
) = (

cs∑
j csjpzj

)dz, (10)

with cs = ds

ps
, where dz is the number of deaths in zth county; ds, ps and csj =

dsj

psj
are the total

number of deaths, the total population, and the mortality rate for jth age group in a standard

population respectively; and pzj is the population in jth age group and zth county. Then,

var(IAR)z = (
cs∑

j csjpzj
)2var(dz),

where dz follows Poisson distribution, cs and csj are assumed to be known from a standard

population. Thus, the estimate for the variance of IAR in z is ( cs∑
j csjpzj

)2dz.

As discussed in Pickle and White (1995), under some conditions, DAR and IAR are equivalent

or similar; but the conditions are not always satisfied in practice. Indirect rates are usually used

when age-specific numbers of deaths are not available in each cell or when the number of deaths

is small (data is sparse). However, indirect rates may not be comparable across geographic areas

when the age and area effects have interaction. Therefore, it is good to show the patterns using

both measures if they are available.

In our analysis, we used the 5-year mortality data to reduce the instability of local age-specific

rates in DAR. The mortality DAR and IAR (1999-2003) are computed using the mortality case

data and population data from the SEER program. The age-adjusted mortality rate represents

the number of deaths per 100,000 people controlling for age. The study area G is the United

States excluding Alaska and Hawaii. The standard population is the 2000 US female population

excluding those in Alaska and Hawaii. The cell units are counties in this analysis and there are a
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total of 3108 counties in G. Ages are grouped into 19 categories (0, 1−4, 5−9, 10−14, · · · , 85+).

We treat DARz (or IARz) as wz, with δz = 1
var(DAR)z

(or δz = 1
var(IAR)z

), z ∈ G, we then use

the weighted normal scan statistic based on equation (8) on the data, searching for clusters of

areas with high age-adjusted mortality rates. By introducing the weight into the scan statistic,

the method becomes less sensitive to the unreliable estimates from low population and locations

with high uncertainty when the data is sparse or has large variation. Since there are more than

3000 counties in the whole country and we are more interested in big clustering patterns instead

of outliers (tiny clusters), we use 10 counties as the minimum search window size and 50% of

total population as the maximum search window sizes for the mortality rate analysis.

The clustering pattern of counties with high DAR and IAR are the same in this analysis, so

we use Figure 3A to present the pattern. The detected cluster is located in the northeastern

USA with p-value as 0.001. The average value of DAR is 27.05 inside the cluster and 24.32

outside. For IAR, the average rate is 29.89 in the cluster and 26.71 outside. The average weight

over the counties inside/outside the cluster is 0.13/0.07 for IAR and 0.16/0.08 for DAR. Note

that the DAR and IAR maps may not always be the same and all the average values mentioned

in this part are weighted averages with weights as the inverse of the corresponding variances

within each cell.

4.2.2 Comparison of Weighted Normal Model and Poisson Model on Evaluating
Breast Cancer Mortality

The Poisson model based spatial scan statistic (Kulldorff 1997) is a spatial statistic that has

been widely used for detecting clusters of high mortality counts or rates. It uses the indirect

standardization technique to obtain the expected cases under the null hypothesis of homoge-

neous relative risk in each strata (www.satscan.org). The key difference between the Poisson

model and the weighted normal model is that the Poisson model approach works on count data

with population information and evaluates clusters of individual cases, however, the weighted

normal model approach works on regional continuous data with varying regional uncertainty and
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evaluates clusters of regions (such as counties). In the Poisson model approach, the datasets

under the null hypothesis of homogeneous individual disease risk are simulated by randomly

relocating the location of the individual cases among population at risk, based on a multinomial

distribution with the restriction of homogeneous relative risk, fixed total cases and the popu-

lation in each cell (e.g. county in this study). However, in the weighted normal approach, the

datasets under the null hypothesis of homogeneous age-adjusted rates for counties are generated

by randomly permuting the observed values of county rates and their associated weights among

locations using a distribution-free permutation procedure, in order to see if high values tend

to occur near other high values. So, for studying the spatial clustering of individual cases, we

move those individual cases and assign them to different locations in order to reduce the spatial

patterns of individual cases for the null dataset generation. For studying the spatial clustering

of cells that may include many cases, we only move those cells in order to reduce the geographic

clustering pattern among cells without touching the cases inside each cell.

We apply the Poisson model based SaTScan method on the same data for the breast cancer

mortality rate study, but the response becomes mortality cases. The maximum window size is

50% of the total population. The result is shown in Figure 3B. The cluster No. 1 in Figure 3B

(average IAR=29.4, p-value=0.001) has large proportion of common areas with the cluster in

Figure 3A (average IAR=29.9). One more cluster (cluster No. 2 in Figure 3B) is detected in

the South Mississippi River area in Figure 3B with p-value as 0.001. The relative risk of dying

from breast cancer is 1.1 in cluster No.1 and 1.16 in cluster No. 2. The average IAR is 29.4 in

No. 1, 31.4 in No. 2, and 26.4 outside. In terms of the rate, cluster No. 2 has higher values

inside compared with outside, but the average weight inside cluster No. 2 is 0.045, only half of

that outside (0.082). So the IAR values in cluster No. 2 have more uncertainty even though the

values of IAR are higher. The average weight in cluster No. 1 is 0.091(Figure 3B) and is similar

to that of outside, namely, 0.082. The cluster No. 2 in Figure 3B is not detected as a cluster of

counties, but a collection of individuals with high chance of dying from breast cancer.
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We summarize some information regarding possibly related factors inside/outside the clusters

(Table 4). The hospital number is from 2000 Area Resource File (http://sodapop.pop.psu.edu/data-

collections/arf). The other factors in this table are from 1994-2003 Behavioral Risk Factor

Surveillance System (BRFSS). It is interesting to see that the cluster area in Figure 3A has less

poverty and more women ages 50-64 who had a mammogram, but also has less oncology hospi-

tals and more smokers than the country average. This may indicate the numbers of oncology

hospitals and smokers are the key factors associated with the high breast cancer mortality in

this detected cluster area. Cluster No. 1 in 3B is very large and actually covers areas including

most of the cluster areas in 3A. For the two clusters in 3B, we notice that they are both in

higher poverty areas with fewer hospitals, and fewer people with advanced education. There are

more smokers in cluster No.1(3B), but less in cluster No. 2, compared with areas outside the

clusters.

5 Conclusion and Discussion

The proposed weighted normal scan methods take into account the uncertainty of continu-

ous measures within cells (e.g., blocks, tracts, counties). The standard normal scan method

(www.satscan.org) originally developed for individual data can also be treated as a special case

of the weighted normal scan method with homogeneous weight (δz = 1, z ∈ G). This new tool

can be widely used for any spatial clustering study based on continuous measures (symmetric

or not) because the hypothesis testing is based on a permutation test, which is very robust to

the varying distributions of the data. The applications presented in this article are selected ex-

amples of the use of the proposed new methods on different types of continuous data. However,

the methods are not restricted to analyze only the mortality rates and survival rates. If the

continuous data are highly skewed, a transformation is recommended.

Researchers should be careful when choosing the available scan methods for a clustering

study. First, the choice of the method depends on the purpose of the study and the hypothesis
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that the researchers want to evaluate. For example, a patient with cancer may like to know if

he/she has high risk of cancer mortality or not (the risk can be affected by both personal and

environmental factors). In this case, the study subject should be the individual. A government

health care planner is interested in the collection of counties with higher cancer mortality rates

on average after adjusting for county uncertainty or county population, in order to decide how

to allocate resources more efficiently to counties. In this case, the study subject should be the

counties.

Second, the selection of the method also depends on the available data structure. In the case

that there is only population data released at cell level (county or state), the proper choice for

the researchers is to study the spatial pattern of the cells and apply the weighted normal model

on the regional data with uncertainty within each cell.

Note that we use permutation rather than simulation in our appraoch. For count data,

when simulating the cases, we only assume the same relative risk of disease, or equal chance of

being an event in a Poisson model or a Bernoulli model. This assumption is very general. But

simulating continuous data requires more assumptions. It is a very restrictive set-up, since we

have to define the exact true distribution (with a specific mean and variance if it’s normal) under

the null hypothesis. Therefore, simulation would make the weighted normal method (developed

for continuous data analysis) very data/application dependent, which is not preferred.

In this article, we have illustrated the use of sample size as a substitute for the variance

within one cell when the variance is not available. In this situation, it is also possible to assume

that the weights δz follow a random distribution (e.g., Gamma distribution) that allows some

variability around the point estimate of the mean weight. The distribution of the weights (δz)

could be assumed to be the same for all z in G (e.g., homogeneously distributed in G) or

inhomogeneously distributed.

With a circular window, we sometimes include low rate areas in the detected cluster of high

rates because of the restriction of the shape. With more flexible search window (Patil et al.
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2004, Tango and Takahashi 2005, Kulldorff et al. 2006), we could have better precision in the

location of the true clusters. The current weighted normal scan model is only designed for purely

spatial analysis. It can be easily extended to a space-time scan statistic when time series data

is available (Kulldorff, Athas, Feuer, Miller and Key 1998).

The approach proposed in this paper has similar goals of local indicators of spatial association

(LISAs) (Anselin 1995). The main purpose of LISAs is to provide a local measure of similarity

between each region’s associated value (a count or a rate) and those of nearby regions. A map

of the regional LISA values can provide insight into the location of regions with comparatively

high or low local association with neighboring values. One of the most popular LISAs is a

local version of Moran’s I, which also adjusts for trend and spatial heterogeneities in regional

variances. However, there are many limitations in the use of LISAs for cluster detection and

in the applications of LISAs to public health data (Waller and Gotway 2004). The proposed

method is more proper for detecting unusual clusters of regions with similar behavior in terms

of rates or other continuous values beyond rates (e.g. survival times).

The method developed here provides a new tool to study the spatial heterogeneity and

geographic clustering pattern of cells (such as counties, tracts, hospitals, and schools) instead

of individual persons in a broader range of population data. This new model will be included

in a future release of SaTScan software (www.satscan.org).
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Table 1: Power, rT (sensitivity), rD (positive predictive value) of the weighted normal scan
method under varying cases. The true cluster for all cases is centered at cell (6,3) with radius
2 that includes 13 cells. The minimum window size is 2 cells and maximum search window size
is 50% of the total cells.

Case Distribution Weight δ c η Power (%) rT rD

in cluster outside
1 N(c

√
2,1) N(0,1) 1 everywhere 0.5 1 25 0.60 0.50

1.0 1 88 0.92 0.89
1.5 1 100 0.99 0.99
2.0 1 100 1.00 1.00
3.0 1 100 1.00 1.00

2a N(c
√

2,1) N(0,1) η at center of cluster (6,3); 1.5 2 100 0.99 0.99
1 elsewhere 1.5 4 100 0.99 0.99

1.5 8 99 0.99 0.98
1.5 10 98 0.98 0.98
1.5 100 97 0.92 0.96
1.5 1000 96 0.91 0.95

2b η at (6,3),(6,2),(7,3), 1 elsewhere 1.5 1000 63 0.53 0.80
η in circle centered at (6,3), 1.5 1000 48 0.37 0.68
with radius 1; 1 elsewhere

3 N(c
√

2,1) N(0,1) η in true cluster; 1 outside 1.5 2 100 0.99 0.99
1.5 4 100 0.98 0.99
1.5 8 99 0.97 0.96
1.5 10 99 0.97 0.95
1.5 100 34 0.65 0.56
1.5 1000 12 0.43 0.40

4 N(c
√

2,1) N(0,1) 1 inside true cluster; η outside 1.5 2 99 0.99 0.98
1.5 4 71 0.94 0.90
1.5 8 12 0.68 0.57
1.5 10 8 0.56 0.44
1.5 100 5 0.21 0.14
1.5 1000 5 0.19 0.13

5 N(c
√

2, η) N(0,1) 1 everywhere 1.5 2 99 0.95 0.98
1.5 4 93 0.84 0.96
1.5 8 81 0.70 0.93
1.5 10 76 0.66 0.90
1.5 100 44 0.41 0.75
1.5 1000 34 0.35 0.67
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Table 2: Performance of the weighted normal scan model on data with varying distributions. The η = 1 implies that we have
homogeneous weight 1 in G. The η > 1 in this table implies that the weight δz(= η) is higher at one cell (6,5) in the true
cluster, and 1 elsewhere. The data have D(µ, σ2) = D(0, 1) inside the true cluster and D(µ, σ2) = D(0 + c

√
2, 1) inside. D

is selected to be Normal, Double exponential (DoubleE), Logistic, Uniform. For Lognormal data, (µ, σ2) = (2, 1) outside and
(µ, σ2) = (2 + c

√
2, 1) inside the true cluster. For Poisson data, (µ, σ2) = (1, 1) outside and (µ, σ2) = (1 + c

√
2, 1 + c

√
2) inside

the true cluster.

c η Power (%)
Normal DoubleE Logistic Uniform Lognormal Poisson

0.5 1 25 23 25 30 13 19
1.0 1 88 86 86 90 71 63
1.5 1 100 100 100 100 99 95
2.0 1 100 100 100 100 100 99
3.0 1 100 100 100 100 100 100
1.5 2 100 100 100 100 99 95
1.5 4 100 100 100 100 99 93
1.5 8 100 100 100 100 99 91
1.5 10 100 100 100 100 99 90
1.5 100 98 98 99 99 97 88
1.5 1000 98 98 98 99 97 86

c η rT rD

Normal DoubleE Logistic Uniform Lognormal Poisson Normal DoubleE Logistic Uniform Lognormal Poisson
0.5 1 0.60 0.58 0.59 0.54 0.46 0.45 0.50 0.51 0.49 0.50 0.43 0.52
1.0 1 0.92 0.92 0.92 0.92 0.89 0.75 0.89 0.90 0.88 0.89 0.85 0.84
1.5 1 0.99 0.99 0.99 1.00 0.99 0.89 0.99 0.99 0.99 0.99 0.98 0.96
2.0 1 1.00 1.00 1.00 1.00 1.00 0.96 1.00 1.00 1.00 1.00 1.00 0.99
3.0 1 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00
1.5 2 0.99 0.99 0.99 0.99 0.99 0.89 0.99 0.99 0.99 1.00 0.98 0.96
1.5 4 0.99 0.99 0.99 0.99 0.99 0.88 0.99 0.99 0.99 0.99 0.97 0.96
1.5 8 0.99 0.98 0.99 0.98 0.98 0.87 0.98 0.98 0.98 0.99 0.96 0.94
1.5 10 0.98 0.98 0.98 0.98 0.97 0.87 0.97 0.97 0.97 0.97 0.95 0.94
1.5 100 0.93 0.93 0.92 0.92 0.93 0.83 0.81 0.84 0.82 0.84 0.84 0.80
1.5 1000 0.91 0.92 0.91 0.92 0.92 0.82 0.77 0.71 0.74 0.76 0.76 0.70
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Figure 1: Power, rT (sensitivity) and rD(positive predictive value) for data with varying distributions. A
(power), B(rT) and C(rD) are the results for data with varying c but same η(=1), and D(power), E(rT) and

F(rD) are the results for data with the same c(=1.5) but varying η as shown in Table 1.
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Figure 2: Clusters of k-year survival rate (k=1,3,5) detected in LA by weighted normal scan method for patients diagnosed with
stage I and II lung cancer from 1988-2002. The s represents k-year survival rate. The rate numbers in the maps are computed by
KM method inside/outside clusters. Other information on the clusters is included in Table 3.
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Table 3a: The k-year survival rate (k=1,3,5) for patients with stage I and II lung cancer inside/outside clusters detected by the
weighted normal scan method on data with cells as Medical Service Study areas (MSSAs) or tracts. The clusters are shown in
Figure 2. The weighted mean is the weighted average of cell survival rates inside/outside clusters with weight as either 1/variance
or sample size. The p-value is the p-value of the particular cluster when testing if the mean of k-year survival rate in the cluster
is higher/lower than that outside using the scan method. The KM estimates are the k-year survival rate estimated directly from
Kaplan Meier method on individual survival times in the related areas. Diff is weighted mean minus KM estimate.

map cell weight k cluster of high k-year survival rate cluster of low k-year survival rate outside clusters
weighted p-value KM diff weighted p-value KM diff weighted KM diff
mean(%) est (%) (%) mean (%) est (%) (%) mean (%) est (%) (%)

2A MSSA 1/variance 1 NA
2B MSSA sample size 1 NA
2C Tract sample size 1 87.26 0.016 84.56 2.7 79.08 0.008 76.09 3.0 83.76 81.08 2.7
2D MSSA 1/variance 3 70.48 < 0.001 67.52 3.0 56.99 < 0.001 54.26 2.7 62.84 59.72 3.1
2E MSSA sample size 3 70.05 < 0.001 67.52 2.5 53.56 < 0.001 50.80 2.8 61.81 59.35 2.5
2F Tract sample size 3 69.78 < 0.001 67.44 2.3 55.33 < 0.001 51.94 3.4 63.16 59.70 3.5
2G MSSA 1/variance 5 60.06 < 0.001 58.33 1.7 42.37 0.002 42.99 -0.6 52.35 50.61 1.7
2H MSSA sample size 5 59.87 < 0.001 58.33 1.5 42.22 0.001 42.99 -0.8 52.18 50.61 1.6
2I Tract sample size 5 62.19 < 0.001 59.81 2.4 46.91 < 0.001 42.67 4.2 54.23 51.00 3.2
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Table 3b: Summary of the factors inside/outside clusters with cell as tract. Advanced education is the percent of adult with at
least four year college education. Poverty is the percent of persons living below poverty level. The numbers in the parentheses
are the average values in the areas covered by the 3-year high rate cluster, but not covered by the 5-year high rate cluster.

map risk factors k average values inside/outside clusters
cluster of high rate cluster of low rate outside clusters

2C 1 47.48 26.43 37.91
2F Median income ($1,000) 3 48.32 (40.47) 25.65 37.88
2I 5 50.51 26.31 38.14
2C 1 34.38 8.54 20.41
2F Advanced education (%) 3 34.69 (33.48) 8.75 20.37
2I 5 33.36 8.99 22.02
2C 1 51.85 46.51 52.11
2F Home owner (%) 3 52.84 (43.06) 44.73 52.18
2I 5 57.63 45.90 51.71
2C 1 28.97 17.26 22.78
2F Health insurance (%) 3 29.15 (25.38) 17.15 22.80
2I 5 30.02 17.56 23.06
2C 1 9.24 22.84 14.19
2F Poverty (%) 3 8.90 (10.70) 23.65 14.10
2I 5 8.30 22.98 13.86
2C 1 8.95 30.75 7.77
2F Black (%) 3 8.44 (25.32) 36.42 6.16
2I 5 2.17 35.71 8.63
2C 1 46.59 59.29 51.54
2F Male (%) 3 46.00 (45.14) 59.69 51.72
2I 5 47.11 59.22 50.63
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Figure 3: A cluster of high breast cancer mortality rate (1999-2003) after adjusting regional
uncertainty (3A) from the weighted normal scan method and high mortality counts adjusting
population (3B) from the Poisson model based SaTScan method. DAR is direct age-adjusted
mortality rate, and IAR is indirect age-adjusted mortality rate.
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Table 4: Average values of the factors over the counties inside/outside the clusters shown in Figure 3. The first three factors
are from 2000 census. All numbers are percentages.

Factors Figure 3A cluster Figure 3B clusters
out in out in No. 1 in No. 2

% of blacks 9.37 7.89 3.76 13.83 36.88
% of adult with 4+ year of college education 15.70 17.98 17.07 15.30 13.48
% of people with income below poverty level 15.16 11.88 13.96 14.32 23.66
2000 county oncology hospitals per 1000 population 1.50 1.28 1.81 1.02 0.95
1999-2003 % women ages 50-64 who had a mammogram in past 2 years 75.66 80.92 75.38 79.31 69.70
1994-1998 % women ages 50-64 who had a mammogram in past 2 years 68.33 73.86 69.04 71.21 58.68
1999-2003 % adults without health insurance 16.41 13.08 16.04 14.56 23.65
1994-1998 % adults without health insurance 15.12 13.13 14.79 14.03 20.80
1999-2003 % of females ages 18+ who ever smoked cigarettes 40.68 45.45 41.09 43.02 36.51
1994-1998 % of females ages 18+ who ever smoked cigarettes 38.30 43.71 38.88 40.71 34.92
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