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Abstract

Spatial scan statistics with Bernoulli and Poisson models are commonly used for geo-

graphical disease surveillance and cluster detection. These models, suitable for count data, were

not designed for continuous outcome data. We propose a spatial scan statistic based on an ex-

ponential model to be used for uncensored or censored continuous survival data. The power and

sensitivity of the developed model are investigated through intensive simulations. The method

performs well for different survival distribution functions including the exponential, gamma and

log normal distributions. How to adjust the analysis for covariates is described in detail. The

method is illustrated using survival data for men diagnosed with prostate cancer in Connecticut

from 1984 to 1995.

Keywords: Geographical surveillance, Spatial scan statistic, Exponential model, Survival

data, Censoring, Covariate adjustment
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1 Introduction

Spatial and space-time scan statistics are commonly used for geographical disease cluster

detection. For mortality and incidence data, a Poisson model is used when the number of cases

is compared to an underlying population at risk derived from the census. Examples of such

use include the study of geographical distribution of variant Creutzfldt-Jakob disease in Great

Britain (Cousens, 2001) and the study of soft-tissue sarcoma and non-Hodgkin’s lymphoma in

France (Viel et al., 2000). By contrast, Bernoulli models are used for dichotomous variables,

such as early/late disease stage, prevalence and treatment data. One example is the study of

geographical differences in primary therapy for early-stage breast cancer in Connecticut (Gregorio

et al., 2001) and another is the spatial variation of late detection of breast and colorectal cancer

in Minnesota (Thomas and Carlin, 2003).

Survival is another health outcome for which geographical disease studies are of interest.

For example, Karjalainen (1990) studied the geographical variation in cancer patient survival

in Finland, and Jack et al. (2003) studied the geographical differences in lung cancer survival

in Southeast England. Recent work on spatial survival analysis has utilized spatially-structured

frailties in Cox-type regressions. Banerjee et al. (2003) explored frailty models for spatially

correlated survival data, with application to infant mortality in Minnesota, Li and Ryan (2002)

developed semiparametric frailty models for spatial survival data, and Banerjee and Carlin (2003)

studied semiparametric spatio-temporal frailty models for survival data.

Here, our problem is to determine if there are geographical clusters of people with shorter

than expected survival time that may reflect inadequate treatment, more aggressive disease or

differential health practices. Similarly, locations characterized by longer than expected survival

time may reveal treatment advances or favorable prognostic indicators among the population at

risk. A common feature of survival data is the presence of censored observations arising when

knowledge of an individual’s life length is known only to a certain point of time. How to deal
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with censored data is well established in conventional survival analysis, whereas their appropriate

incorporation in spatial analysis is uncertain.

A näıve approach to analyze geographical survival data is to define a cut point, divide the

subjects into short and long survival groups and employ a Bernoulli based spatial scan statistic

on the dichotomized data. Not only is it hard to choose the cut point, there is a loss of infor-

mation when changing the continuous data into a 0/1 variable. Moreover, if there are censored

observations, it is not clear how to dichotomize the data when the censoring times are prior to

the cut-off value.

Here we propose a spatial scan statistic based on the exponential model, to analyze geo-

graphic variation in health events measured on a continuous scale, such as survival time and

disease progression. The exponential distribution is often used for survival data and it is ideal

for handling censored observations. One concern is the sensitivity of the exponential model

to other survival time distributions. A robustness study is implemented and the results for

cluster detection of survival time modeled according to true exponential, gamma or log normal

distributions are examined.

A second consideration is how to adjust the analysis in order to account for possible con-

founding factors such as age, gender, race/ethnicity, and disease stage, which could bear upon

finding shorter or longer survival times. Hence, a way to adjust for covariates is presented.

The Bernoulli and exponential models and their corresponding spatial scan statistics are

described in sections 2 and 3 respectively. The robustness of the exponential spatial scan statistic

for other distribution functions is evaluated in section 4. The advantage of the exponential model

over the Bernoulli model is also investigated. A practical example, applying the exponential

model to prostate cancer survival data in Connecticut is given in section 5. In section 6, we

show how to adjust for covariates. The paper ends with a discussion in section 7.
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2 Bernoulli Model

A näıve approach for geographical survival data is to dichotomize the continuous time to event

data, and then use the existing Bernoulli based spatial scan statistic to study the spatial vari-

ation in survival. While not recommending such an approach, we describe and evaluate it in

comparison to the exponential model proposed later in this paper.

The Bernoulli model has been described in detail by Kulldorff (1997). In summary, let G

be the study area and let Z be any circular sub-area in G. Let p be the probability of “short

survival” for a case living within the zone Z ∈ G, while the same probability for individuals

outside the zone is q. The null hypothesis H0 : p = q is contrasted to the alternative hypothesis

Ha : p > q. Under H0, the outcome for any one individual is independent of those for the others.

Let cZ be the total number of cases with short survival and nZ the total number of subjects

within area Z. Let C and N be the respective totals for the whole study area G.

The Bernoulli based spatial scan statistic is defined as (Kulldorff, 1997)

λ = max
Z

(
cZ

nZ
)cZ (1− cZ

nZ
)nZ−cZ (

C − cZ

N − nZ
)C−cZ (1− C − cZ

N − nZ
)(N−nZ)−(C−cZ )×I(

cZ

nZ
>

C − cZ

N − nZ
). (1)

Note that there are many overlapping Z’s in G. One zone Z could be centered at any location

of the diagnosed patients, and with gradually increasing radius until the zone includes 50% of

the total number of patients in the study region G. Therefore, it could include some areas with

zero population, such as lakes, oceans, forests and areas outside G but having common border

with G. The zone Ẑ, which maximizes the likelihood in equation (1), is called the most likely

cluster.

As there is no closed form for the distribution of λ, Monte Carlo hypothesis testing is used.

M data sets are generated under H0, where p = q, and λ is computed for each simulated data

set. At the α-level, H0 is rejected if the rank of the λ obtained from real data is among the

α(M + 1) largest λ’s (Dwass, 1957).
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If there is interest in clusters with longer survival times, the classification of short and long

survival time may be reversed. If there is simultaneous interest in both types of clusters, the

indicator function in equation (1) is removed from the definition of λ.

3 Exponential Model

3.1 Test Statistic

For a spatial scan statistic with an exponential model, let the survival time for each individual

inside zone Z be distributed according to the exponential distribution with mean θin, while the

survival times for individuals outside Z be exponentially distributed with mean θout. The null

hypothesis H0 : θin = θout for any Z is contrasted with the alternative Ha : θin < θout for at least

one Z when one wants to detect clusters with shorter survival, with Ha : θin > θout for at least

one Z when one wants to detect clusters with longer survival, and with Ha : θin 6= θout for at

least one Z when one wants to find clusters with either shorter or longer survival. Note that the

zone Z could be any circle with different centroid and size in the whole study area G. Under

the alternative hypothesis that θin and θout are different for different zones, while the parameter

Z disappears under the null hypothesis.

Suppose that there are N individuals under study and that associated with the ith individual

is a lifetime Ti and a fixed censoring time Li. For the time being, the Ti’s are assumed to

be independently and identically distributed (i.i.d.) with the exponential probability density

function f(Ti) = 1
θ
e−Ti/θ. The lifetime Ti of an individual will be observed only if Ti ≤ Li.

If Ti > Li, the survival time is censored considering a right censoring mechanism. Define the

observed time ti = min(Ti, Li). Let δi = 1 if Ti ≤ Li, and δi = 0 if Ti > Li, where δi indicates

whether the lifetime Ti is censored or not. Define rin =
∑

i∈Z δi (the number of non-censored

individuals inside zone Z), and rout =
∑

i/∈Z δi (the number of non-censored individuals outside

zone Z). Let nin and nout be the total number of individuals inside and outside the zone Z
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respectively. The total number of individuals in G is N = nin + nout and the total number of

non-censored individuals is R = rin + rout.

The likelihood for an arbitrary zone Z can be expressed as

L(Z, θin, θout) =
∏

i∈Z

1

(θin)δi
e
−Tiδi

θin e
−Li(1−δi)

θin ×
∏

i/∈Z

1

(θout)δi
e
− Tiδi

θout e
−Li(1−δi)

θout ,

=
1

(θin)rin
e
−

∑
i∈Z

ti
θin

1

(θout)rout
e
−

∑
i/∈Z

ti
θout .

where i ∈ Z indicates that the ith individual is located in zone Z.

The related likelihood ratio test statistic for a test with the alternative θin 6= θout for at least

one zone Z is

λ =
maxZ,θin 6=θout L(Z, θin, θout)

maxZ,θin=θout L(Z, θin, θout)
=

L(Ẑ)

L0
,

where Ẑ is the zone which maximizes L(Z, θin, θout) under Ha, and L0 is the maximum of

L(Z, θin, θout) under H0 (i.e., θin = θout for any Z). We use the set of circular zones centered at

one of the patient locations. Unlike the general scan statistic for count data where each zone may

have only a single individual, here each zone consists of at least two and at most N
2

individuals.

L(Ẑ) and L0 can be calculated according to the following equations. Given an arbitrary zone Z,

the maximum likelihood estimates of θin and θout are θ̂in = rin∑
i∈Z ti

and θ̂out = rout∑
i/∈Z ti

. We then

have:

L(Ẑ) = max
Z

1

(θ̂in)rin

e
−

∑
i∈Z ti
θ̂in

1

(θ̂out)rout

e
−

∑
i/∈Z ti

θ̂out ,

= max
Z

(
rin∑
i∈Z ti

)rine−rin(
rout∑
i/∈Z ti

)route−rout,

Likewise

L0 =
1

(θ̂G)R
e
−

∑
i∈G ti
θ̂G = (

R∑
i∈G ti

)Re−R.

The censoring information is incorporated into the likelihood functions L and L0 through rin,

rout, and R, which are functions of the censoring indicator δ. Note that L0 depends only on
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R, the total number of non-censored individuals, but not on the spatial distribution of those

individuals. For the alternative θin 6= θout we can now write the test statistic as:

λ =
maxZ( rin∑

i∈Z ti
)rin( rout∑

i/∈Z ti
)rout

( R∑
i∈G ti

)R
.

For the alternative θin < θout, this function is multiplied by I( rin∑
i∈Z ti

< rout∑
i/∈Z ti

), and for the

alternative θin > θout, it is multiplied by I( rin∑
i∈Z ti

> rout∑
i/∈Z ti

).

If there are no censored observations, then under the alternative θin 6= θout:

L(Ẑ) = max
Z

(
nin∑
i∈Z ti

)nine−nin(
nout∑
i/∈Z ti

)noute−nout ,

and

L0 = (
N∑
i∈G ti

)Ne−N ,

and hence,

λ =
maxZ( nin∑

i∈Z ti
)nin( nout∑

i/∈Z ti
)nout

( N∑
i∈G ti

)N
.

3.2 Permutation Test Procedure

Statistical inference and hypothesis testings will be conducted based on the distribution of the

test statistic λ. Unfortunately, as with most scan statistics (Glaz et al., 2001), we cannot find

the distribution of the test statistic in closed analytical form. One common approach for scan

statistics is to generate simulated data under the null hypothesis, but that is difficult in our

case, since the distribution of survival times are unknown in terms of both the expected survival

time and the censoring mechanism. Instead, we will condition on the observed set of survival

times and censoring indicators, permuting these observed pairs {(ti, δi), i = 1, · · · , N} among

the individual geographical coordinates. Note that the individual geographical coordinates are

the fixed locations of the individuals observed in the study region G.

To obtain the exact distribution for λ, the test statistic must be calculated for all n! rear-

rangement (permutations) of the n observations, for which the computational demand is very
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large even for small data sets. Therefore, instead of a complete permutation, a random selection

of 9999 permutations is used. The test statistic λ is calculated for each permutation, and p-values

are determined using Monte Carlo hypothesis testing as proposed by Dwass (1957). With 9999

replications, the null hypothesis is rejected at the 0.05 α-level if the value of the test statistic

for the real observed data set is bigger than the 500th highest values of the test statistic coming

from the replications plus the observed one. The corresponding p-value is R/(1 + 9999), where

R is the rank of the test statistic value from the observed data among all 10000 test statistic

values.

In addition to the most likely cluster, there are always secondary clusters that can be ranked

according to their likelihood values. Rather than comparing the nth highest likelihood in the

real data set with the nth highest likelihood in the random data sets, we compare it with the

maximum likelihood in the random data sets. The interpretation of this is that statistically

significant secondary clusters that do not overlap with a more likely cluster are capable of

rejecting the null hypothesis on their own account, irrespectively of any other clusters in the

observed data.

Note that we are using two different null hypotheses, the first being a subset of the second.

Formally, the null hypothesis is stated as the survival times being exponentially distributed

with θin = θout for all Z. This formulation is needed to derive the test as a likelihood ratio

test statistic. In the permutation step though, we only require that all the survival times are

equally distributed irrespectively of their spatial location, and this weaker definition of the null

hypothesis is sufficient to ensure valid statistical inference.

To model the survival times, we used the exponential distribution. Many survival times are

not exponentially distributed, but may follow a gamma, log normal, Weibull or other distribu-

tions. What is important is that because of the permutation based test procedure (we are not

generating the simulated data under null from exponential distribution, but randomly permut-
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ing the locations and the survival time/censoring attributes of the observations), the statistical

inference is still valid and the correct α level maintained irrespectively of the true underlying

survival distribution. The exponential distribution, or to be more precise, the exponential based

likelihood function, simply assigns a weight to the different survival times. For the exponential

model, this weight is based on the continuous survival and censoring times observed, as opposed

to the 0/1 weights used by the Bernoulli model which is only based on whether the observation

is above or below the chosen cut point. In essence, the exponential derivation provides a sum-

mary value for each potential cluster considered by the procedure and the maximum of these

values indicates the most likely cluster. The real data may follow other distributions, but one

can still calculate the exponential based summary value. While this value for non-exponentially

distributed data is not as precise as it is for exponentially distributed data and no longer has an

interpretation as a likelihood test statistic, this does not matter since we don’t use any likelihood

theory to evaluate the statistical significance.

In the next section, we evaluate how robust the exponential based spatial scan statistic is for

various survival time distributions.

4 Power, Sensitivity and Positive Predictive Value

To test the performance of the proposed method, survival data were randomly generated for

610 individuals. Different data sets were generated from exponential, gamma, and log normal

distribution with different means and variances. For the geographical locations, we used real

data, consisting of the locations of home residence of men diagnosed with prostate cancer in

Connecticut in 1984. For all simulated data, a true cluster of 47 individuals was created in

Fairfield County with the centroid at (41.079N, 73.618W) and a radius of 8.65km. Individuals

within this cluster had a survival time with lower mean than the rest of the state.

We simulated data sets either with censoring or without censoring. Here, we only consider
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data with right censoring and the censoring times vary randomly according to some probability

distributions inside and outside the true cluster. We let Li have the same distribution as Ti

for those individuals outside of the true cluster. The percentage of individuals with censored

survival times are then about 50%.

We created 10000 simulated data sets for each probability model under alternative hypothesis.

For each of these simulated data sets, we generated 999 random permutations to obtain the p-

values. For each model, the power is estimated as
number of simulations with p-value <0.05

10000
. To

evaluate the precision of the detected clusters, we define the sensitivity to be the proportion of

the individuals in the true cluster ‘captured’ by the detected cluster and the positive predictive

value (PPV) to be the proportion of the individuals in the detected cluster belonging to the true

cluster. We estimate the sensitivity by

1

S

S∑

s=1

number of individuals in both true and detected clusters in sth simulation

number of individuals in the true cluster in sth simulation
,

and the PPV by

1

S

S∑

s=1

number of individuals in both true and detected clusters in sth simulation

number of individuals in the detected cluster in sth simulation
,

where S is the total number of simulations.

The results are shown in Table 1. As expected, the power is larger when the difference

in the mean survival times is greater, and also when the survival times have smaller variance.

The power is not only high for exponential survival times, but also for the other survival time

distributions. Note that for identical values of the mean difference and variance, the power is

higher for log normal compared to exponential survival time, even though the scan statistic is

based on the exponential likelihood. As expected, the power for censored data is lower than that

for noncensored data since there is a loss of information.

We used sensitivity and PPV to investigate if the location of the detected cluster is close

to the location of the true cluster, as shown in Figures 1, 2, and 3. The means and medians
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of the sensitivity and PPV are high (≥ 0.9) when the related power is high (> 0.9), and are

around 0.5 to 0.9 when the related power is moderate. The variability of the sensitivity and PPV

increase when the power is low. Note that when the power is high or moderate, the distribution

of sensitivity and PPV are both left skewed, with the mean lower than the median. When the

power is low, the distributions are right skewed. The sensitivity is always smaller than or equal

to the PPV, which implies that the detected cluster tends to be somewhat smaller than the true

cluster, but at the right location.

For comparison purpose, we evaluated the Bernoulli based scan statistic for noncensored

survival data, using the median as the cut point to dichotomize the data. The Bernoulli model

has lower power than the exponential model for exponential, gamma and lognormal data (Table

1). The exponential model is also better in terms of sensitivity and PPV (Figure 1 and 2).

The sensitivity and PPV are lower for censored data than those for noncensored data using

exponential model, which is consistent with the results observed from the power evaluations.

The exponential model does not work so well for normally distributed data. First, the

exponential model requires that all observations are positive numbers, while normal data may be

either negative or positive. Second, if the observations are positive, the power of the exponential

based model still cannot compete with the Bernoulli model. For illustration, we simulated normal

data with mean 105, 107 and variance 25, 49 inside the cluster and mean 110 and variance 100

outside cluster. For normal data with mean 105 inside, the power is 0.8968 for the exponential

model, and 0.9971 for the Bernoulli model. For normal data with mean 107 inside cluster, the

power is 0.1464 for the exponential model and 0.3783 for the Bernoulli model. Therefore, we do

not recommend the use of the exponential model for normally distributed data or for data with

other similar approximately symmetric distributions.
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5 Prostate Cancer Survival in Connecticut

We illustrate the use of the exponential based scan statistic with data on prostate cancer survival

in Connecticut. Between 1984 and 1995, the Connecticut Tumor registry recorded 22,612 invasive

prostate cancer incidence cases (ICD-9-#185) among the state’s population-at-risk (roughly 1.2

million males 20+ years old in 1990). Latitude-longitude coordinates for locations of home

residence at time of diagnosis (+/- 50 meters) were successfully assigned to 20,598 records

(91.1%). Follow-up of cases (1 to 5,867 days surviving following cancer diagnosis) was completed

through December 2000. 1325 individuals with missing survival time information plus 212 cases

that reported death on the day of diagnosis were excluded from the analysis. The 19,061 available

records are analyzed in the following study. Of these, 10,308 records have complete time to death

follow-up, while 8,753 records (45.9%) are right censored.

The most likely cluster with significantly reduced survival time was the vicinity of Waterbury

in Western Central Connecticut (Area 1 in Figure 4 (left panel), p=0.001) for which men living

within that locale when diagnosed with prostate cancer where estimated to have 29% higher risk

to die with the disease during follow-up than similarly affected men living elsewhere. Secondary

clusters with shorter survival were found around the city of Bridgeport in Southern Connecticut

(Area 2, p = 0.001) and a localized area in Central Connecticut (Area 3; p=0.003). Area 3 is very

small with radius 0.68 kilometers and only 36 patients, so it appears as a small dot on the map.

Conversely, the most likely location of patients that experienced significantly longer survival time

was in the North Central suburbs of greater Hartford (Area 4, p=0.001) where the risk of dying

with prostate cancer was observed to be only 84% of those outside the area. Secondary locations

with significantly longer survival times were found for two different suburban communities of

Fairfield County (Areas 5 and 6, p=0.001 and 0.015, respectively). Note that both Area 2 and

Area 5 extend outside the border of Connecticut. Half of Area 2 is located in the ocean with

zero population. A small part of Area 5 is in New York State, but since the study region is the
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state of Connecticut, the area in New York State is also treated as if it had zero population.

We also evaluate survival using k-year survival probability, which is the probability of survival

k-year after diagnosis with the disease. As shown in Table 3, the estimated 3-year, 5-year and

10-year survival probabilities in Area 1, 2, and 3 (detected short survival clusters) are all much

less than those found outside. The survival probability was very low in Area 3, but since there

are only 36 patients in this small cluster, the standard error for the estimated survival probability

is big. Therefore, even with a very low survival probability, Area 3 is still not the most likely

cluster of short survival.

These results call for further analysis for possible explanation of the observed clusters. It

is worth noting, for example, that the patients average age at diagnosis in the short survival

clusters are older than those found outside those locations (Table 2). This raises the question

as to whether the detection of clusters is simply artifacts of the geographical variation in age

distribution of prostate cancer patients. In order to find clusters not dependent on age (i.e.,

attributable to other contextual factors), it is necessary to adjust for age as a covariate. In the

following section we describe how to do this.

6 Covariates Adjustment

6.1 Adjustment Procedure

In the previous sections, we discussed how to detect clusters using the spatial scan statistic based

on the exponential and Bernoulli models respectively. Both models used the information about

survival times, the locations and numbers of individuals, but no information about covariates.

Potential covariates of interest include demographic variables, such as age, gender, race/ethnicity,

socio-economic status, or education; behavioral variables, such as dietary; and physiological

variables, such as tumor grade, tumor stage, histology, blood pressure, hemoglobin levels or

heart rate. All these variables could be nuisance factors, which lead a non-homogenous study
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population. Here, we describe one way to adjust for covariates when applying the exponential

based spatial scan statistic to search for clusters.

Consider a life time Ti > 0 and a vector xi = (xi1, xi2, · · · , xip)
′ associated with the lifetime Ti,

where i = 1, · · · , N . The vector xi may include values of some known functions of quantitative

variables and certain indicator functions of qualitative variables. We assume that xi includes an

intercept by taking xi1 = 1. Let β(= (β1, · · · , βp)
′) denote the corresponding p − dimensional

vector of regression coefficients. We use the linear regression approach (Klein and Moeschberger,

1997) to model the covariate effects on survival. In this approach, the natural logarithm of the

lifetime Yi = ln(Ti) is modeled. Since we propose a scan statistic based on an exponential model,

we will do the covariate adjustment using an exponential regression model.

This model can be written as:

Yi = x
′

iβ + Wi,

with β1 being the intercept. Wi is an error term, which follows an extreme value distribution

with density fW (w) = ewe−ew
,−∞ < w < ∞. Then, Ti has a density given by f(t|x) =

exp(−x
′
β) exp

{
− exp(−x

′
β)t

}
, which is an exponential distribution with mean exp(x

′
β).

From the model, we obtain the estimate of the parameters, β̂, using the observed data from

the whole study area. The estimated mean of survival time for ith subject is exp(x
′
iβ̂). We then

adjust the individual survival times based on the estimated mean so as to remove the effect of

the covariates.

For example, if we only have age as a continuous covariate in the model with intercept,

we obtain the β̂2 as negative value, which indicates that the survival time is shorter for older

people. For the youngest person, the expected survival time is estimated as exp(β̂1 + κβ̂2),

where κ = min(xi2), i = 1, · · · , N, N is the total number of observations. For ith person with

xi2 > κ, the expected survival will be lower than that for the youngest person. The ratio of

the mean survival for old vs. young people is then exp(β̂2 × (xi2 − κ)). In order to adjust for
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age, we let tadj
i = ti × exp(−β̂2 × (xi2 − κ)), where i = 1, . . . , N . After the adjustment, we

have E(tadj
i ) = E(ti0), i0 indicates the person with the smallest age, which implies the expected

survival times for all persons become the same as that for the youngest person.

For binary covariates or dummy variables, the lower level values can be selected to be the κ.

In the presence of multiple covariates, the formula for adjustment can be extended as follows:

tadj
i = ti × exp

{
−

p∑

j=2

β̂j × (xij − κj)

}
,

where κj = min(xij), i = 1, . . . , N, j = 1, . . . , p, p− 1 is the number of covariates included in the

model with intercept. Note that the κj could also be defined to be the maximum or mean of the

jth covariate, or other values. The main purpose is to make the expected survival time to be the

same for subjects with different values of the covariates that need to be adjusted for.

The spatial models described in section 2 and 3 can then be employed on the adjusted survival

times, tadj
i , i = 1, . . . , N .

6.2 Connecticut Prostate Cancer Data

According to the result from an exponential regression model applied to the survival data in

the whole study region, age at diagnosis significantly affects the hazard rates (P < 0.0001); for

a one-year increase in age at diagnosis the hazard rate is 1.067 times higher. Consequently,

the relative survival time is shorter and the survival probability is lower. Results from the

exponential based scan statistic on adjusted survival time data are presented in Tables 2 and 3,

and in Figure 4 (right panel). These findings differ importantly from the unadjusted analysis.

Clusters 3, 5 and 6 are no longer statistically significant when the age composition of patients

across Connecticut is taken into account. On the other hand, the statistical significance of

Clusters 1, 2, and 4 cannot be attributed to age at diagnosis as that factor is now controlled in

the analysis. As yet unadjusted geographic factors pertaining to etiology (e.g.,lifestyle), disease

(e.g., stage, grade), health status (comorbidities), health services (therapies, settings) and social
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conditions (deprivation, social support) merit consideration for explaining the three remaining

clusters.

7 Discussion

The spatial scan statistics with the Bernoulli and Poisson models are useful in detecting clusters

in spatial count data, but neither model is directly applicable to survival time data. The Bernoulli

model could be employed with survival data after using a cut point to dichotomize the data into

short and long survival, but dichotomization leads to a loss of information and a loss of power.

The situation is even more problematic for the Bernoulli model when the data are censored,

since it is not clear what to do with subjects with censoring times that are smaller than the cut

point used. Another issue is the arbitrary selection of the cut point. For all these reasons, we

do not recommend the use of the Bernoulli model for survival data, recommending instead the

exponential model proposed in this article.

The exponential model does not lead to biased p-values associated with the most likely

cluster even when the true survival times are not exponentially distributed. This is because the

permutation of the observed coordinates and the survival times ensures that the correct α level

is preserved, no matter how the survival times are distributed. The exponential model works

well for censored and noncensored survival data, and for exponential, gamma, and log normal

survival time distributions. The exponential model does not work well for all continuous data

though, and we do not recommend its use for data that is approximately normally distributed.

Further study should be done to find models that work well for such data.

The findings for prostate cancer survival are consistent with the observed variation in prostate

cancer incidence in Connecticut during a roughly similar period (Gregorio et al., 2004). Areas

that exhibited greater than expected incidence appear here to have experienced better than

expected survival. This is most likely a consequence of the nature of prostate cancer, a screening-
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detectable condition affecting men in advanced years of life. That is, circumstances conducive to

good health and health care yield high numbers of cases (through vigilant screening) and these

cases experience preferable outcomes (through early detection and/or treatment). Conversely,

locations characterized by fewer than expected cases were found here to have poorer survival

with the disease that may reflect other health disparities present in those locations, as well as

inadequate detection and/or treatment of cases.

The method was used for purely spatial data in our paper. Scan statistics have also been

developed for the space-time setting to detect clusters that exist in both space and time, in

either a retrospective (Kulldorff et al., 1998) or prospective situation (Kulldorff, 2001, Kulldorff

et al., 2005). The exponential model can be directly extended to such a setting by simply

defining the zones Z as 3-dimensional cylinders rather than circles. It can also be extended

to create a scan statistic with elliptical (Kulldorff et al., 2006) or other cluster shapes (Patil

and Taillie, 2003, Tango and Takahashi, 2005, Duczmal and Assunção, 2005) if we suspect

that the true shapes of the clusters are not approximately circular. The exponential model has

recently been incorporated into the available SaTScanTM software which can be downloaded

from www.satscan.org.
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Figure 1: Side by side boxplot of Sensitivity from the exponential model (left panel) and
Bernoulli model (right panel) on noncensored data. The labels on the x axis are consistent
with those in Table 1. The + in the box indicates the mean, the line inside the box indicates
the median, the upper border of the box is 75th percentile, the lower border of the box is 25th

percentile. The interquartile range (IQR) is the difference between the 75th percentile and the
25th percentile. The outliers are shown as circles. Their values are defined as being above 75th

percentile+1.5(IQR) or below 25th percentile-1.5(IQR).
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Figure 2: Side by side boxplot of PPV from the exponential model (left panel) and Bernoulli
model (right panel) on noncensored data. The labels on the x axis are consistent with those in
Table 1. All the symbols and lines are defined as in Figure 1.

Figure 3: Side by side boxplot of Sensitivity (left panel) and PPV (right panel) from the expo-
nential model on random censored data. The labels on the x axis are consistent with those in
Table 1. All the symbols and lines are defined as in Figure 1.
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Figure 4: Significant clusters of short survival and long survival detected in Connecticut without
age adjustment (left panel) and with age adjustment (right panel), with p-value smaller than
0.05. The circular regions with hatch are with longer survival time, and those without hatch are
with shorter survival time.

clusters without age adjustment clusters with age adjustments
cluster centroid radius (KM) cluster centroid radius (KM)
No.1 (41.577N, 73.085W) 12.69 No.1 (41.829N, 72.879W) 15.43
No.2 (41.206N, 73.015W) 20.06 No.2 (41.589N, 73.031W) 10.12
No.3 (41.538N, 72.806W) 0.68
No.4 (41.861N, 72.862W) 16.00 No.4 (41.217N, 73.023W) 16.40
No.5 (41.238N, 73.409W) 11.57
No.6 (41.089N, 73.608W) 4.16
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Table 1: Estimated power of the exponential and Bernoulli models applied to simulated data
with different distributions. Outside the cluster, the mean for all the distributions is 10, the
variance is 100.0 for exponential data, 31.6 for G(a) data, 10.0 for G(b) data, and 100.0 for log
normal data.

Distribution of Simulated Data Estimated Power
Label type in cluster Exponential Bernoulli

mean variance Model Model
Noncensored data
E3 3 9.0 0.9998 0.9917
E4 exponential 4 16.0 0.9554 0.8367
E5 5 25.0 0.6503 0.4940
E7 7 49.0 0.1090 0.1019
G(a)3 3 5.2 1.0000 1.0000
G(a)5 gamma 5 11.2 0.9994 0.9833
G(a)7 7 18.5 0.6432 0.4305
G(b)3 3 3.0 1.0000 1.0000
G(b)5 gamma 5 5.0 1.0000 1.0000
G(b)7 7 7.0 0.9992 0.9404
L3 3 9.0 1.0000 1.0000
L5 log normal 5 25.0 0.9998 0.9828
L7 7 49.0 0.6381 0.4012
Random censored data
E3 3 9.0 0.9851 N/A
E4 exponential 4 16.0 0.7695 N/A
E5 5 25.0 0.3836 N/A
E7 7 49.0 0.0771 N/A
G(a)3 3 5.2 1.0000 N/A
G(a)5 gamma 5 11.2 0.9971 N/A
G(a)7 7 18.5 0.5238 N/A
G(b)3 3 3.0 1.0000 N/A
G(b)5 gamma 5 5.0 1.0000 N/A
G(b)7 7 7.0 0.9702 N/A
L3 3 9.0 1.0000 N/A
L5 log normal 5 25.0 0.9974 N/A
L7 7 49.0 0.4915 N/A
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Table 2: The spatial scan statistic applied to prostate cancer data in Connecticut from
1984 to 1995 before and after adjusting the effect of age at diagnosis. The detected
clusters and the corresponding p-values are presented. In the table, age is the aver-
age age at diagnosis, inside and outside the cluster respectively. RR is relative risk (=
(# deaths in cluster A)/(# individuals in cluster A)

(# deaths outside A)/(# individuals outside A)
). LLR is log-likelihood ratio.

cluster in cluster RR LLR P age age
# deaths # individuals (in/out) adjustment

short 1 646 938 1.29 41.88 0.001 72.1/71.4 no
survival 2 2154 3706 1.10 19.06 0.001 71.6/71.4 no

3 33 36 1.70 16.13 0.003 72.2/71.4 no
long 4 661 1445 0.84 31.83 0.001 71.5/71.4 no
survival 5 200 529 0.69 22.24 0.001 72.0/71.4 no

6 37 114 0.60 12.11 0.015 71.7/71.4 no
short 1 582 841 1.30 29.36 0.001 72.1/71.4 yes
survival 2 1662 2831 1.10 14.07 0.005 71.4/71.5 yes
long surv 4 704 1515 0.85 32.65 0.001 71.5/71.4 yes

Table 3: 3-year, 5-year, and 10-year survival probabilities estimated from Kaplan-Meier method
(Kaplan and Meier, 1958) inside/outside the clusters shown in the maps with/without age ad-
justment.

cluster cumulative survival probability (stderr) adjustment
3-year 5-year 10-year

short 1 0.6856 (0.0152) 0.5362 (0.0163) 0.2371 (0.0180) no
survival 2 0.7436 (0.0072) 0.6157 (0.0080) 0.3376 (0.0102) no

3 0.5000 (0.0833) 0.2222 (0.0693) 0.0864 (0.0522) no
long 4 0.8348 (0.0098) 0.7427 (0.0116) 0.4903 (0.0163) no
survival 5 0.8631 (0.0150) 0.7825 (0.0181) 0.5647 (0.0283) no

6 0.9192 (0.0258) 0.8555 (0.0334) 0.6831 (0.0510) no
out clusters 0.7801 (0.0037) 0.6626 (0.0043) 0.3893 (0.0571) no
short 1 0.6865 (0.0160) 0.5302 (0.0173) 0.2290 (0.0192) yes
survival 2 0.7438 (0.0082) 0.6157 (0.0092) 0.3338 (0.0115) yes
long surv 4 0.8307 (0.0096) 0.7391 (0.0113) 0.4862 (0.0159) yes
out clusters 0.7804 (0.0035) 0.6637 (0.0040) 0.3922 (0.0054) yes
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