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SUMMARY

The spatial scan statistic is commonly used for geographical disease cluster detection, cluster evaluation
and disease surveillance. The most commonly used shape of the scanning window is circular. In this
paper we explore an elliptic version of the spatial scan statistic, using a scanning window of variable
location, shape (eccentricity), angle and size, and with and without an eccentricity penalty. The method
is applied to breast cancer mortality data from Northeastern United States and female oral cancer
mortality in the United States. Power comparisons are made with the circular scan statistic. Copyright
? 2006 John Wiley & Sons, Ltd.

KEY WORDS: disease surveillance; clusters; clustering; spatial statistics; eccentricity penalty;
statistical power

1. INTRODUCTION

Spatial and space–time scan statistics [1, 2] are commonly used in disease surveillance for
geographical cluster detection and evaluation, for which they have been shown to have good
statistical power [3, 4]. Recent studies includes among many others its use for the surveillance
of lateral sclerosis mortality in Finland [5], breast cancer mortality in Texas [6], late stage
breast and colorectal cancer in Minnesota [7], congenital anomalies in Ireland [8], the preva-
lence of giardiasis intestinal parasites in Ontario [9], listeriosis incidence in New York State
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[10], chronic wasting disease among white-tailed deer in Wisconsin [11], and hospital emer-
gency visits and West Nile virus in New York City [12, 13]. Whether a disease cluster is due
to environmental risk factors, the genetic makeup of the population, di�erences in behavioural
risk factors, the spread of an infectious agent or a bioterrorism attack, the scan statistic can
assist in the detection of disease clusters. This allows health o�cials to investigate disease
outbreaks in a timely fashion, and if needed, rapidly implement disease prevention and control
measures.
With the spatial scan statistic, a window of variable shape and size moves across a

geographical region. Each shape, size and location de�nes a candidate cluster area. For each
candidate area, the likelihood is calculated based on the observed and expected number of
cases inside and outside that area. The area with the maximum likelihood de�nes the most
likely cluster, that is, the cluster least likely to have occurred by chance. The statistical signif-
icance of this cluster is determined by generating a large number of random data sets under
the null hypothesis of no clustering, and then calculating the maximum likelihood for each
random data set in exactly the same manner as for the real data. If the maximum likelihood
for the real data is ranked among the 5 per cent highest, the cluster is signi�cant at the
5 per cent signi�cance level. Important features of the spatial scan statistic are that it adjusts
for the uneven spatial distribution of the population at risk, for covariates such as age, and
for the multiple testing inherent in the large number of candidate cluster areas considered.
Mathematical details, including its derivation as a likelihood ratio test, have been provided
by Kulldor� [14].
When applying the spatial scan statistic, a natural choice of window shape is the circle,

as it is the most compact shape that can be obtained. This is also the shape that has been
used in practice. Other shapes are also possible though, such as ellipses, squares or triangles.
These may have higher power if the true cluster shape is non-circular, which one would often
expect to be the case. In this paper we evaluate the use of an elliptic spatial scan statistic,
with and without an eccentricity (non-compactness) penalty. The method is applied to breast
cancer mortality in northeastern United States and female oral cancer mortality in the United
States. Power comparisons are made with the circular spatial scan statistic.

2. AN ELLIPTIC SPATIAL SCAN STATISTIC

The elliptic spatial scan statistic is a special case of the spatial scan statistic described by
Kulldor� [14], as the mathematical principles behind the spatial scan statistics are identical
for circular, elliptic or any other shape of the window, the only di�erence being the collection
of candidate cluster areas considered.
An ellipse can be uniquely de�ned by �ve parameters: the x and y coordinates of its

centroid, and its shape (eccentricity), angle, and size. We de�ne the shape of the ellipse as
the ratio of the length of the semimajor axis to the length of the semiminor axis, that is, it is
the ratio of the longest to the shortest axis of the ellipse. A large number indicates a long and
narrow ellipse while a shape of 1 gives the circle as a special case. The shape s is related
to the eccentricity e of the ellipse through the formula s=1=

√
1− e2. The parameter � is the

angle between the horizontal line and the semimajor axis of the ellipse.
For both scienti�c and computational reasons, we will not consider all possible ellipses.

First of all, for computational reasons, we will only consider a �nite set of ellipse centroid
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Table I. The per cent of the area of one ellipse that is also part of another ellipse with
the same centre, shape and size, but with di�erent angles �◦ apart. The shape of the
ellipse is de�ned as the ratio of the length of its longest (semimajor) to its shortest
(semiminor) axis. The numbers with about three times as many di�erent angles as

the ratio of the ellipse length to width, are shown in bold face.

Ellipse shapes

# of angles (�) 1.5 2 4 6 8

2 (90◦) 75 59 31 21 16
4 (45◦) 82 67 41 29 22
6 (30◦) 87 77 52 38 30
9 (20◦) 91 84 64 50 41
12 (15◦) 93 88 71 59 49
15 (12◦) 94 90 76 65 56
18 (10◦) 95 92 80 70 62
24 (7:5◦) 95 94 85 77 70
30 (6◦) 97 95 88 81 75
36 (5◦) 98 95 90 84 79
45 (4◦) 98 97 92 87 83
60 (3◦) 99 98 94 90 87
90 (2◦) 99 98 96 94 91
180 (1◦) 100 99 98 97 96
360 (0:5◦) 100 100 99 98 98

coordinates. The centroid coordinates could be a regular grid with points that are located a
�xed distance apart or, as in the application below, identical to the county centroids.
Next, we need to select a collection of ellipse shapes. An ellipse with shape equal to one

de�nes the circle as a special case and we recommend always including the circle in any
elliptic analysis. One possible collection of ellipse shapes is 1, 1.5, 2, 3, 4, 5, 6, 8, 10, 15,
20, 30, 60 and 120. Long and narrow ellipses may not always be of interest for scienti�c
reasons. As an example, with spatially aggregated data, a very long and narrow cluster could
include one county in Florida, one in Missouri, one in Montana and one in Alaska, and no
other, and that is usually not what we consider to be a geographical cluster. In the subsequent
analyses, we will test di�erent subsets of the above-mentioned shapes, by selecting one of
them as the maximum and including all smaller (less eccentric) shapes on the list as well.
For each ellipse shape a speci�c number of di�erent angles is considered. For a compact

elliptic shape, such as for example 1.5, the county centroids included in the ellipse do not
change much with a slight change in the angle. In the extreme, the county centroids included
in an ellipse with a shape of 1 (= circle) do not depend on the angle at all. For a long and
narrow ellipse though, a small change in the angle will result in a very di�erent set of county
centroids. Hence, it is logical to use a larger collection of angles when the ellipse shape is
long and narrow. To evaluate the suitable parameter values, we calculated the per cent overlap
between two ellipses with the same ellipse centroid, shape and size but a speci�c angle apart.
These numbers are presented in Table I.
We recommend using at least three times as many di�erent angles as the ratio of the ellipse

length to width. These numbers are shown in bold face in Table I, and we can see that it
leads to an overlap between neighbouring ellipses of about 70 per cent. Other choices are
also possible.

Copyright ? 2006 John Wiley & Sons, Ltd. Statist. Med. 2006; 25:3929–3943



3932 M. KULLDORFF ET AL.

For each centroid, shape and angle, we will consider an in�nite number of continuously
increasing ellipse sizes from zero up to an upper limit such that for example at most
50 per cent of the total population is included within the ellipse. If the cluster is larger than
50 per cent, then we are not really evaluating a cluster with excess disease within the
ellipse, but rather a cluster outside the ellipse with fewer disease cases than expected. This
area outside the ellipse could be highly irregular, creating one ‘cluster’ consisting of for ex-
ample, Alaska, Hawaii, Maine and Florida in a United States analysis. If clusters with fewer
cases than expected are of interest, it is better to do a two-sided test, looking for ellipses with
either a high or low rate of disease.
All this means that an in�nite number of overlapping ellipses of di�erent location, shape,

angle and size are considered as candidate cluster areas. The exact choice is by nature some-
what arbitrary and will depend on the data being analysed, the questions being asked from
the data and computational resources. It is critical though that the choice of the collection of
ellipses to use is decided before looking at the observed case data. If the choice is made to �t
an already observed cluster, then there will be pre-selection bias and the statistical inference
will be invalid.

3. BREAST CANCER MORTALITY IN NORTHEASTERN UNITED STATES

To test the elliptic scan statistic, we �rst applied it to breast cancer mortality data from
Northeastern United States, 1988–1992. This data has been previously analysed using the
circular spatial scan statistic [15] as well as the circle-based isotonic spatial scan statis-
tic [16]. The data set encompasses the years 1988–1992 and covers the 245 counties and
county equivalents in Connecticut, Delaware, District of Columbia, Maine, Maryland, New
Hampshire, New Jersey, New York, Pennsylvania, Rhode Island, and Vermont. There were
a total of 58 943 breast cancer deaths among a population of 29 535 210 women. The an-
nual mortality rate was 39.9 per 100 000 women. Following Kulldor� et al. [15], all analyses
in this paper use the Poisson model, where the observed number of deaths in a county
is modelled according to Poisson distribution. All analyses are adjusted for age using in-
direct standardization and 18 di�erent �ve year age groups: 0–4; 5–9; : : : ; 80–84,
and 85+.
We analysed the data using ellipses with the set of centroid co-ordinates equal to the

county centroids and a maximum cluster size of 50 per cent of the total population. Di�erent
maximum shapes were tried, equal to 1, 1.5, 2, 3, 4, 5, 6, 8, 10, 15, 20, 30, 60 and 120,
including all smaller shapes on the list with every speci�c maximum. For example, with 3
as the maximum shape, the collection consisted of the circle and the ellipse shapes 1.5, 2
and 3. For each shape, we used either 3 times as many angles as the shape ratio (Table II)
or 6 times as many (Table III). For the former analyses, the most likely clusters detected are
shown in Figures 1(b)–(i). For comparison, Figure 1(a) shows the results with the circular
scan statistic [15].
We evaluated the sensitivity of the results to the number of ellipse angles chosen. The

ellipse angle is de�ned as the angle between the horizontal east–west line and the longest
axis of the ellipse. With one angle, the analysis will only consider horizontal ellipses where
the longest axis is in the east–west direction. With two angles, ellipses with a north–south
axis are also considered, and so on. For a �xed collection of ellipse shapes set to 1 (circle),
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Table II. Analysis of county based breast cancer mortality in the Northeastern United States, 1988–1992,
using di�erent maximum ellipse shape ratios. For each analysis, the collection of shapes used consists
of all the lower ratios on the list up to and including the maxima. For each ellipse shape, the number

of angles considered were three times the ellipse shape ratio.

Analysis Most likely cluster

Max Computing Counties Ellipse # Cases

shape min:s Centroid # Shape Angle Obs Exp RR LLR P

1 0:25 Monmouth, NJ 32 1 n=a 24 044 23 040 1.044 35.70 0.001
1.5 0:36 Ocean, NJ 31 1.5 45◦ 22 748 21 711 1.048 38.94 0.001
2 0:51 Monmouth, NJ 28 2 30◦ 22 403 21 350 1.049 40.47 0.001
3 1:10 Camden, NJ 16 3 60◦ 8342 7585 1.100 42.16 0.001
4 1:40 Atlantic, NJ 33 4 30◦ 13 181 12 207 1.080 48.05 0.001
5 2:13 Talbot, MD 34 5 36◦ 13 206 12 231 1.080 48.05 0.001
6 2:52 Camden, NJ 24 6 30◦ 12 408 11 396 1.089 54.56 0.001
8 3:57 Camden, NJ 24 6 30◦ 12 408 11 396 1.089 54.56 0.001
10 5:02 Camden, NJ 24 6 30◦ 12 408 11 396 1.089 54.56 0.001
12 6:19 Camden, NJ 24 6 30◦ 12 408 11 396 1.089 54.56 0.001
15 7:59 Newcastle, DE 16 15 32◦ 10 347 9401 1.101 55.16 0.001
20 11:18 Monmouth, NJ 15 20 30◦ 9679 8731 1.109 58.68 0.001
30 13:54 Monmouth, NJ 15 20 30◦ 9679 8731 1.109 58.68 0.001
40 18:17 Monmouth, NJ 15 20 30◦ 9679 8731 1.109 58.68 0.001
60 25:39 Monmouth, NJ 15 20 30◦ 9679 8731 1.109 58.68 0.001
120 40:51 Monmouth, NJ 15 20 30◦ 9679 8731 1.109 58.68 0.001

Table III. Analysis of county based breast cancer mortality in the Northeastern United States,
1988–1992, using di�erent maximum ellipse shape ratios. For each analysis, the collection of
shapes used consists of all the lower ratios on the list up to and including the maxima. For each

ellipse shape, the number of angles considered were six times the ellipse shape ratio.

Analysis Most likely cluster

Max Computing Counties Ellipse # Cases

shape min:s Centroid # Shape Angle Obs Exp RR LLR P

1 0:25 Monmouth, NJ 32 1 n=a 24 044 23 040 1.044 35.70 0.001
1.5 0:48 Ocean, NJ 34 1.5 60◦ 24 482 23 410 1.046 40.54 0.001
2 1:13 Ocean, NJ 34 1.5 60◦ 24 482 23 410 1.046 40.54 0.001
3 1:52 Camden, NJ 16 3 60◦ 8342 7585 1.100 42.16 0.001
4 2:49 Atlantic, NJ 33 4 30◦ 13 181 12 207 1.080 48.05 0.001
5 3:53 Burlington, NJ 24 5 30◦ 12 633 11 612 1.088 54.76 0.001
6 5:58 Burlington, NJ 24 5 30◦ 12 633 11 612 1.088 54.76 0.001
8 8:23 Burlington, NJ 24 5 30◦ 12 633 11 612 1.088 54.76 0.001
10 9:29 Gloucester, NJ 18 10 33◦ 11 028 10 054 1.097 55.53 0.001
12 12:22 Gloucester, NJ 19 12 32.5◦ 11 133 10 155 1.096 55.53 0.001
15 16:06 Gloucester, NJ 19 12 32.5◦ 11 133 10 155 1.096 55.53 0.001
20 20:30 Monmouth, NJ 15 20 30◦ 9679 8731 1.109 58.68 0.001
30 27:10 Monmouth, NJ 15 20 30◦ 9679 8731 1.109 58.68 0.001
40 35:40 Monmouth, NJ 15 20 30◦ 9679 8731 1.109 58.68 0.001
60 49:44 Monmouth, NJ 15 20 30◦ 9679 8731 1.109 58.68 0.001
120 60:15 Monmouth, NJ 15 20 30◦ 9679 8731 1.109 58.68 0.001
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Figure 1. Breast cancer mortality in northeastern United States, 1988–1992, and
the most likely clusters found using the circular (a) and elliptic (b)–(i) spatial

scan statistic with di�erent upper limits on the ellipse shape.

1.5, 2 and 3, and with the same number of angles for each of the ellipse shapes, the results
for di�erent number of angles are provided in Table IV.

4. ECCENTRICITY PENALTY

In Tables II and III, the shape of the most likely cluster is the maximum shape allowed in
15 of the 30 elliptic analyses. One possible reason for this is that the true cluster is very
eccentric (long and narrow). Even under the null hypotheses though, the most likely cluster
is more likely to be eccentric. To see this, note that with a less eccentric shape such as 1:1.1,
all ellipses with the same centroid will irrespectively of their angle include approximately
the same counties, with only minor variations at the edges. On the other hand, for eccentric
ellipses with the same centroid, the counties included will be very di�erent even if the angle
only di�ers a little. In e�ect, an eccentric ellipse is more apt at ‘picking cherries’, setting the

Copyright ? 2006 John Wiley & Sons, Ltd. Statist. Med. 2006; 25:3929–3943
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Table IV. Most likely clusters for di�erent number of angles used. The potential cluster shapes were
set to 1 (circle), 1.5, 2 and 3. For each analysis, the number of angles were set to either 1, 2, 4,
6, . . . , 90 or 180, with the same number of angles used for each shape. The number of degrees

between neighbouring angles are given in the second column.

Analysis Most likely cluster

# Computing Counties Ellipse # Cases

Angles Closeness min:s Centroid # Shape Angle Obs Exp RR LLR P

1 n=a 0:33 Monmouth, NJ 32 1 n=a 24 044 23 040 1.044 35.70 0.001
2 90◦ 0:41 Monmouth, NJ 32 1 n=a 24 044 23 040 1.044 35.70 0.001
4 45◦ 0:54 Sussex, DE 48 3 45◦ 25 646 24 569 1.044 40.34 0.001
6 30◦ 1:08 Camden, NJ 16 3 60◦ 8342 7585 1.100 42.16 0.001
9 20◦ 1:26 Camden, NJ 16 3 60◦ 8342 7585 1.100 42.16 0.001
12 15◦ 1:49 Camden, NJ 16 3 60◦ 8342 7585 1.100 42.16 0.001
15 12◦ 2:08 Worcester, MD 35 3 36◦ 13 242 12 275 1.079 47.23 0.001
18 10◦ 2:27 Camden, NJ 16 3 60◦ 8342 7585 1.100 42.16 0.001
24 7.5◦ 3:01 Worcester, MD 33 3 37.5◦ 12 425 11 522 1.078 43.11 0.001
30 6◦ 3:44 Worcester, MD 35 3 36◦ 13 242 12 275 1.079 47.23 0.001
36 5◦ 4:18 Cape May, NJ 34 3 35◦ 13 110 12 138 1.080 48.06 0.001
45 4◦ 5:27 Worcester, MD 35 3 36◦ 13 242 12 275 1.079 47.23 0.001
60 3◦ 7:55 Worcester, MD 35 3 36◦ 13 242 12 275 1.079 47.23 0.001
90 2◦ 11:06 Worcester, MD 35 3 36◦ 13 242 12 275 1.079 47.23 0.001
180 1◦ 20:33 Cape May, NJ 34 3 35◦ 13 110 12 138 1.080 48.06 0.001

centroid, shape and angle so that only the counties with the highest rates are included even
though they may not even be neighbouring counties. This can be seen in Figure 1(i).
One solution to this problem is to exclude the more eccentric ellipses from the analysis,

as done in the previous section. Another possible solution is to adjust the cluster likelihood
with a penalty function that discourages eccentric clusters without excluding their possibility.
We decided to use the eccentricity penalty function (4s=(s + 1)2)a so that the adjusted log
likelihood is

LLRadj =LLR ∗
(

4s
(s+ 1)2

)a

where LLRadj is the adjusted log likelihood ratio, LLR is the original log likelihood ratio,
and s is the cluster shape de�ned as the length of the longest axis divided by the length of
the shortest axis of the ellipse and a¿0 is a tuning parameter. (Note: For a=1, this is the
inverse ratio of the area of the smallest rectangular box containing the ellipse with the area
of a square with the same circumference as that box.) The eccentricity penalty is stronger for
large values of the tuning parameter a. In the extreme, when a=0, there is no penalty, and
when a→ ∞, the penalty is so strong that only circular clusters are allowed. Note that (i) for
the circle s=1, so that the adjusted log likelihood ratio is equal to the true log likelihood
ratio, (ii) that the amount of penalty increases in a monotone fashion as s increases, and (iii)
that LLRadj → 0 as s→ ∞.
Using the above penalty function we reanalysed the breast cancer mortality data with the

same set of maximum shapes. The results are presented in Table V. For shape 1.5, the most
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Table V. Analysis of county based breast cancer mortality in the Northeastern United States, 1988–1992,
using di�erent maximum ellipse shape ratios, and the 4s=(s+ 1)2 penalty function, where s is the length
of longest axis of the ellipse divided by the length of the shortest axis. For each ellipse shape, the number
of angles considered was three times the ellipse shape. The most likely cluster was the same for shape

maxima of 1.5, 2, 3, 4, 5, 6, 8, 10, 12, 15, 20, 30, 40, 60 and 120.

Most likely cluster

Max Counties Ellipse # Cases

shape Centroid # Shape Angle Obs Exp RR LLR LLRadj P

1 Monmouth, NJ 32 1 n=a 24 044 23 040 1.044 35.70 35.70 0.001
1.5–12 Ocean, NJ 31 1.5 45◦ 22 748 21 711 1.048 38.94 37.38 0.001

likely cluster had a log likelihood value of 38.94 (Table II), and the adjusted log likelihood is
then 38:94 ∗ (4 ∗ 1:5=(1:5+ 1)2)=37:38 which is higher than the maximum log likelihood for
the circular shape, which was 35.70. For shape 2, the most likely cluster had a log likelihood
value of 40.47 (Table II), so that the adjusted log likelihood is 40:47∗ (4∗2=(2+1)2)=35:97.
This is also larger than the maximum for the circles but not larger than the maximum among
the 1.5 shape ellipses. In fact, no other shape has an adjusted log likelihood higher than for
1.5, so that is the shape of the eccentricity adjusted most likely cluster.

5. ORAL CANCER MORTALITY IN THE UNITED STATES

We applied the circular and elliptic spatial scan statistic to the classical oral cancer mortality
data for white females in the United States, 1950–1969, collected by the National Center for
Health Statistics. In 1975, these data were shown to have high rates in southeastern United
States [17]. This led to a subsequent case-control study in North Carolina identifying snu�
dipping (smokeless tobacco use) as a primary risk factor for oral cancer, with relative risks
ranging as high as 50 for cancers of the oral tissue that comes in direct contact with the
tobacco [18].
Plate 1 shows the original age-adjusted mortality data remapped to quintiles of the rate

distribution at the county level, along with the most likely circular and elliptical clusters. We
analysed these data using circles and ellipses based on county centroid co-ordinates with a
maximum cluster size of 50 per cent of total population, ellipse shapes of 1.5, 2, 3, and 4
and using the eccentricity penalty. The optimum ellipse has an axis ratio of 1.5 and is centred
in the southwestern corner of Georgia whereas the circle is centred about 100 miles to the
east in Valdosta, GA. It is interesting to note that the circular cluster includes eastern North
Carolina where the original etiological study was conducted, but the elliptical cluster more
closely follows the concentration of high rates from the Mississippi River to South Carolina.

6. POWER EVALUATION

In this section, the power of the elliptic spatial scan statistic is estimated for di�erent alter-
native hypothesis, where the true cluster is either circular or elliptic in shape. Comparisons

Copyright ? 2006 John Wiley & Sons, Ltd. Statist. Med. 2006; 25:3929–3943



Plate 1. Oral cancer mortality rates in women 1950–1969, by county. Shown are
also the locations of the most likely cluster for the circular and elliptic spatial

scan statistics, the latter being used with the eccentricity penalty.
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Table VI. Power of the circular and elliptic spatial scan statistics for true circular clusters with 1, 2, 4,
8 or 16 counties, at four di�erent locations and for an �=0:05 signi�cance level. Di�erent maximum

elliptic shapes were used, set at 2, 4, 8 and 20, respectively.

True cluster Type of scan statistic (number = max shape)

(circular) Circular Elliptic, without penalty Elliptic, with penalty

# counties 1 2 4 8 20 2 4 8 20

Rural 1 1.00 1.00 0.99 0.99 0.99 1.00 1.00 1.00 1.00
(Grand Isle, VT) 2 0.99 0.99 0.99 0.98 0.98 0.99 0.99 0.99 0.99

4 0.97 0.96 0.96 0.96 0.95 0.97 0.97 0.97 0.97
8 0.97 0.97 0.96 0.96 0.95 0.97 0.97 0.97 0.97
16 0.97 0.97 0.96 0.96 0.95 0.97 0.97 0.97 0.97

Mixed 1 0.94 0.93 0.91 0.92 0.92 0.92 0.92 0.92 0.92
(Allegheny, PA) 2 0.94 0.92 0.91 0.92 0.92 0.92 0.92 0.92 0.92

4 0.94 0.93 0.92 0.92 0.92 0.93 0.93 0.93 0.93
8 0.94 0.93 0.92 0.92 0.91 0.93 0.93 0.93 0.93
16 0.95 0.94 0.94 0.93 0.92 0.94 0.94 0.94 0.94

Mixed 1 0.99 0.99 0.98 0.98 0.98 0.99 0.99 0.99 0.99
(Delaware, NY) 2 0.98 0.97 0.97 0.97 0.96 0.98 0.98 0.98 0.98

4 0.97 0.97 0.96 0.96 0.94 0.97 0.97 0.97 0.97
8 0.96 0.95 0.94 0.93 0.91 0.95 0.95 0.95 0.95
16 0.95 0.95 0.94 0.92 0.91 0.95 0.95 0.95 0.95

Urban 1 0.92 0.88 0.86 0.87 0.89 0.90 0.90 0.90 0.90
(Manhattan, NY) 2 0.90 0.88 0.86 0.80 0.88 0.88 0.88 0.88 0.88

4 0.89 0.87 0.86 0.86 0.87 0.88 0.87 0.87 0.87
8 0.91 0.90 0.89 0.89 0.88 0.91 0.91 0.91 0.91
16 0.93 0.92 0.91 0.91 0.90 0.92 0.92 0.92 0.92

are made with the power of the circular scan statistic. When the true cluster is elliptic, the
question is how much we will gain by using the elliptic scan statistic. When the true cluster
shape is circular, the hope is that we do not loose too much power when using the elliptic
spatial scan statistic as opposed to the circular one.
For all subsequent power estimates, 99 999 random data sets were generated under the null

hypothesis with 600 cases in each, where each case is assigned to a county with probability
in proportion to its population. Among the maximum likelihood ratios for each of these data
sets, the one ranked as number 5000, starting with the highest, is the critical value needed to
reject the null hypothesis at the �=0:05 signi�cance level. We then generated 10 000 random
data sets under each of the alternative hypotheses, and the estimated power is the per cent of
these 10 000 data sets that has a maximum likelihood ratio larger than the previously described
critical value.

6.1. Circular cluster alternatives

Kulldor� et al. [3] have constructed a set of benchmark data sets for evaluating the power
of spatial clustering tests. Three of these are hot spot clusters consisting of a single county
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located in a rural area (Grand Isle, VT), a mixed urban=rural area (Allegheny, PA) and an
urban area (Manhattan, NY). Centred on the same three counties, but also including the
closest surrounding counties, they constructed additional hot-spot clusters with 2, 4, 8 and 16
counties, respectively. The relative risk was the same in all counties within the same cluster,
and de�ned so that one would have 99.9 per cent power to detect the cluster if one knew the
exact geographical extent a priori. Hence, this is an upper limit on the power that any test
statistic could obtain.
Kulldor� et al. [3] calculated the power of the circular scan statistic for each of these

15 alternative models. Those numbers are reproduced in Table VI, together with the power
estimates for the elliptic scan statistics with di�erent upper limits on the ellipse shape, and with
and without the eccentricity penalty. Using the same procedure, we also created an additional
set of �ve hot-spot clusters in a mixed urban=rural area centred on Delaware County, NY. As
expected, the circular scan statistic has the highest power for circular alternatives. It is worth
noting though, that the loss in power for the elliptic scan statistics is modest, and especially
so when using the eccentricity penalty.

6.2. Elliptic cluster alternatives

For the elliptic cluster alternative models, we used the same four central counties as for the
circular alternative hypotheses. Instead of picking the nearest neighbours to add to the cluster
we drew an ellipse around the county centroid with the longest axis at 45◦ (southwest to
northeast). We then included additional counties into the cluster in order of their inclusion
into the ellipse as the size of the ellipse was increased. We did this for three di�erent ellipse
shapes: 2, 4 and 8. The twelve clusters with 16 counties are depicted in Figure 2.
With four centroids, four cluster sizes and four cluster shapes, we evaluated a total of 64

di�erent elliptic alternative hypotheses. The results are presented in Tables VII–IX for true
cluster shapes of 2, 4 and 8, respectively. As expected, the power is often highest for the
elliptic scan statistic with maximum shape close to the true shape. The loss in power when
specifying a large range of shapes is rather modest though. Likewise, the circular scan statistic
is still competitive for elliptic clusters. Results were similar for true cluster shapes of 1.5
and 3 (data not shown).

7. DISCUSSION

The elliptic spatial scan statistic performs well when the maximum shape is not too large. For
very large shape maxima the elliptic spatial scan statistic performs poorly, as it may select
a narrow string of noncontiguous census areas, with many areas in between left outside of
the cluster (Figure 1(I)). This may be less of a problem with data that is less aggregated,
but even then there is a question of why one would expect a true cluster to follow a very
narrow but straight line rather than a slightly curved one. Hence, we recommend that if the
elliptic spatial scan statistic is used without an eccentricity penalty, there should be a fairly
restrictive upper limit on the shape ratio. This recommendation also makes sense in terms
of computing time. While more computer intensive than the circular scan statistic, it is not
overly problematic when the maximum shape ratio is low. Long and narrow ellipses need
a much higher number of angles for each shape though, leading to considerable increase in

Copyright ? 2006 John Wiley & Sons, Ltd. Statist. Med. 2006; 25:3929–3943



ELLIPTIC SPATIAL SCAN STATISTIC 3939

Figure 2. The 16 county elliptic clusters used for the power evaluations, with a
shape of two (top), four (middle) and eight (bottom), respectively.
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Table VII. Power of the circular and elliptic spatial scan statistics for true elliptic clusters with
shape 2, with 1, 2, 4, 8 or 16 counties, at four di�erent locations and for an �=0:05 signi�cance

level. Di�erent maximum elliptic shapes were used, set at 2, 4, 8 and 20, respectively.

True cluster Type of scan statistic (number = max shape)

(shape=2) Circular Elliptic, without penalty Elliptic, with penalty

# counties 1 2 4 8 20 2 4 8 20

Rural 2 0.99 0.99 0.99 0.98 0.98 0.99 0.99 0.99 0.99
(Grand Isle, VT) 4 0.97 0.97 0.96 0.96 0.95 0.97 0.97 0.97 0.97

8 0.97 0.97 0.96 0.96 0.95 0.97 0.97 0.97 0.97
16 0.95 0.95 0.95 0.94 0.93 0.95 0.95 0.95 0.95

Mixed 2 0.94 0.92 0.91 0.91 0.92 0.92 0.92 0.92 0.92
(Allegheny, PA) 4 0.93 0.92 0.92 0.92 0.91 0.92 0.92 0.92 0.92

8 0.94 0.93 0.93 0.92 0.92 0.92 0.93 0.93 0.93
16 0.94 0.94 0.93 0.93 0.92 0.94 0.94 0.94 0.94

Mixed 2 0.96 0.97 0.97 0.97 0.97 0.98 0.98 0.98 0.98
(Delaware, NY) 4 0.95 0.96 0.96 0.96 0.94 0.97 0.97 0.97 0.97

8 0.85 0.92 0.92 0.91 0.91 0.92 0.92 0.92 0.92
16 0.93 0.94 0.94 0.93 0.91 0.94 0.94 0.94 0.94

Urban 2 0.91 0.89 0.87 0.87 0.89 0.89 0.89 0.89 0.89
(Manhattan, NY) 4 0.89 0.87 0.86 0.86 0.87 0.88 0.88 0.88 0.88

8 0.91 0.90 0.89 0.89 0.89 0.90 0.90 0.90 0.90
16 0.91 0.91 0.91 0.91 0.89 0.91 0.91 0.91 0.91

Table VIII. Power of the circular and elliptic spatial scan statistics for true elliptic clusters with
shape 4, with 1, 2, 4, 8 or 16 counties, at four di�erent locations and for an �=0:05 signi�cance

level. Di�erent maximum elliptic shapes were used, set at 2, 4, 8 and 20, respectively.

True cluster Type of scan statistic (number = max shape)

(shape=4) Circular Elliptic, without penalty Elliptic, with penalty

# counties 1 2 4 8 20 2 4 8 20

Rural 2 0.99 0.99 0.99 0.98 0.98 0.99 0.99 0.99 0.99
(Grand Isle, VT) 4 0.96 0.97 0.96 0.96 0.96 0.97 0.97 0.97 0.97

8 0.94 0.95 0.95 0.95 0.94 0.95 0.95 0.95 0.95
16 0.91 0.93 0.94 0.94 0.93 0.92 0.93 0.93 0.93

Mixed 2 0.94 0.92 0.91 0.91 0.92 0.92 0.92 0.92 0.92
(Allegheny, PA) 4 0.92 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91

8 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91
16 0.92 0.92 0.92 0.92 0.91 0.92 0.92 0.92 0.92

Mixed 2 0.96 0.97 0.97 0.97 0.97 0.98 0.98 0.98 0.98
(Delaware, NY) 4 0.87 0.92 0.94 0.94 0.95 0.91 0.92 0.92 0.92

8 0.86 0.91 0.94 0.93 0.92 0.90 0.91 0.91 0.91
16 0.86 0.88 0.92 0.93 0.92 0.88 0.89 0.89 0.89

Urban 2 0.91 0.87 0.86 0.86 0.88 0.89 0.89 0.89 0.89
(Manhattan, NY) 4 0.87 0.87 0.86 0.86 0.88 0.88 0.88 0.88 0.88

8 0.89 0.88 0.88 0.88 0.88 0.92 0.91 0.91 0.91
16 0.91 0.91 0.91 0.91 0.90 0.91 0.91 0.91 0.91
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Table IX. Power of the circular and elliptic spatial scan statistics for true elliptic clusters with
shape 8, with 1, 2, 4, 8 or 16 counties, at four di�erent locations and for an �=0:05 signi�cance

level. Di�erent maximum elliptic shapes were used, set at 2, 4, 8 and 20, respectively.

True cluster Type of scan statistic (number = max shape)

(shape=8) Circular Elliptic, without penalty Elliptic, with penalty

# counties 1 2 4 8 20 2 4 8 20

Rural 2 0.99 0.99 0.99 0.98 0.98 0.99 0.99 0.99 0.99
(Grand Isle, VT) 4 0.97 0.97 0.96 0.96 0.96 0.97 0.97 0.97 0.97

8 0.90 0.91 0.92 0.94 0.93 0.90 0.91 0.91 0.91
16 0.87 0.89 0.91 0.93 0.92 0.88 0.89 0.89 0.89

Mixed 2 0.94 0.92 0.91 0.91 0.92 0.92 0.92 0.92 0.92
(Allegheny, PA) 4 0.92 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91

8 0.90 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91
16 0.89 0.90 0.91 0.91 0.91 0.90 0.90 0.90 0.90

Mixed 2 0.96 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
(Delaware, NY) 4 0.90 0.93 0.94 0.95 0.95 0.92 0.93 0.93 0.93

8 0.84 0.85 0.89 0.93 0.94 0.86 0.87 0.87 0.87
16 0.82 0.85 0.90 0.92 0.92 0.84 0.85 0.85 0.85

Urban 2 0.91 0.87 0.86 0.86 0.88 0.89 0.89 0.89 0.89
(Manhattan, NY) 4 0.83 0.79 0.82 0.84 0.85 0.81 0.81 0.81 0.81

8 0.69 0.72 0.78 0.84 0.85 0.71 0.73 0.73 0.73
16 0.78 0.81 0.84 0.86 0.86 0.80 0.80 0.80 0.80

computing time as the maximum shape ratio increases. This can be seen from the analyses
in Tables II and III.
An alternative is to use a large number of elliptic shapes combined with the eccentricity

penalty, so that eccentric clusters will emerge only if there is strong evidence compared to less
eccentric clusters, but where the more compact cluster is favoured if the likelihoods are about
the same. By incorporating the eccentricity penalty, it is less likely that eccentric clusters are
detected when the true cluster is more compact, at the same time as eccentric clusters can be
detected if the evidence is su�ciently strong. In most practical situations, we think that this
is a reasonable approach to take and better than using the elliptic scan statistic without an
eccentricity penalty.
In this paper we only evaluated one particular choice of eccentricity penalty function. By

changing the tuning parameter, it is possible to increase or decrease the amount of penalty.
While to some extent arbitrary, the choice of this parameter should as much as possible be
based on prior views on the type of clusters that are likely to occur or of interest to �nd in
the data set being analysed. It is reassuring to know though that the statistical power is rather
robust to this choice. There are also alternative penalty functions that one could use, some of
which may be more appropriate or more natural for certain types of applications.
The number of angles to use for each ellipse shape is an arbitrary decision, but it is clear

from Table II that a narrower ellipse needs more angles. We tried to set the number of angles
to both three and six times the shape ratio, with very similar results. From Table IV it is
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clear that we should not use too few though. We recommend using at least three times as
many angles as the shape ratio.
Although more �exible than the circle, the elliptic scan statistic still imposes a parametric

shape on the potential clusters. This may make it di�cult to detect clusters of very irregular
shapes, such as a narrow strip on each side of a long and winding river or along the shore
of a rough edged coastline. To detect such clusters, it is probably better to use one of the
non-parametric spatial scan statistics proposed by Duczmal and Assun�cião [19], Patil and
Taillie [20] or Tango and Takahashi [21].
A major conclusion from this paper is that in terms of power, the elliptic scan statistic

performs well for circular clusters, and equally important, that the circular scan statistic per-
forms well for elliptic clusters. One possible advantage of the elliptic versus the circular scan
statistic is that the former may give a better estimate of the true cluster area. When the true
cluster is an elongated one, the geographic area determined by the most likely cluster to be
included in follow-up investigations may then be more speci�cally de�ned by the elliptic
method than the circular scan statistic. Given the scarce resources available to most state and
local health departments, a greater speci�city of cluster identi�cation would reduce the cost to
investigate potential disease outbreaks. It could also be the opposite though. Even if the true
cluster is circular, some areas on its border will by chance have fewer cases and some areas
just outside the border will by chance have more cases. This may lead to the most likely
cluster being elliptic, even when the true cluster is circular.
Whatever the shape of the most likely cluster, it is important to keep in mind that it

only indicates the general area of the true underlying cluster, and that the exact borders
of the detected clusters are uncertain. This is su�cient for most practical purposes, as the
method’s main purpose is to generate a signal with a general idea of where the outbreak
has occurred. More detailed information about the outbreak, its cause, nature and extent, can
only be obtained through detailed epidemiological investigations by public health o�cials,
who should not focus exclusively on the area within the most likely cluster, but also on
neighbouring localities. In light of this last comment, the exact choice of shapes and angles
is not of critical importance. The key is to use a wide variety of centroid co-ordinates and
cluster sizes.
If computing resources allow, better results may sometimes be obtained using an ellip-

tic rather than circular scan statistic. It is reassuring though that the di�erence in power is
marginal, and the elliptic scan statistic will perform only slightly better or worse depending
on the shape of the true underlying cluster. Either option ful�lls the basic purpose of geo-
graphical cluster detection. For valid statistical inference, it is important that the choice is
made a priori though, before analysing the data, in order to avoid pre-selection bias.
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