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Applications
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Abstract: A common problem in spatial statistics is whether a set of points are
randomly distributed or if they show signs of clusters or clustering. When the
locations of clusters are of interest, it is natural to use a spatial scan statistic.

Different spatial scan statistics have been proposed. These are discussed
and presented in a general framework that incorporates two-dimensional scan
statistics on the plane or on a sphere, as well as three-dimensional scan statistics
in space or in space-time. Computational issues are then looked at, presenting
efficient algorithms that can be used for different scan statistics in connection
with Monte Carlo-based hypothesis testing. It is shown that the computational
requirements are reasonable even for very large data sets. Which scan statistic
to use will depend on the application at hand, which is discussed in terms of past
as well as possible future practical applications in areas such as epidemiology,
medical imaging, astronomy, archaeology, urban and regional planning, and
reconnaissance.

Keywords and phrases: Spatial statistics, geography, spatial clusters space—
time clusters, maximum likelihaod, likelihood ratio test

14.1 Introduction

The scan statistic is a statistical method with many potential applications,
designed to detect a local excess of events and to test if such an excess can
reasonably have occurred by chance. The scan statistic was first studied in
detail by Naus (1965a,b), who locked at the problem in both one and two
dimensions.
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In two or more dimensions, which is the topic of this chapter, the events may
be cases of leukemia, with an interest to see if there are geographical clusters
of the disease; they may be antipersonnel mines, with an interest to detect
large mine fields for removal; they could be Geiger counts, with an interest to
detect large uranium deposits; they could be stars or galaxies; they could be
breast calcifications showing up in a mammography, possibly indicating a breast
tumor; or they could be a particular type of archaeological pottery. Later on
we will discuss each of these and several other applications and the type of scan
statistic that is suitable in each situation.

Three basic properties of the scan statistic are the geometry of the area
being scanned, the probability distribution generating events under the null
hypothesis, and the shapes and sizes of the scanning window. We present a
general framework in which most multidimensional scan statistics fit. Depend-
ing on the application, different models will be chosen, and depending on the
model, the test statistic may be evaluated either through explicit mathemati-
cal derivations and approximations or through Monte Carlo sampling. In the
latter case, random data sets are generated under the null hypothesis, and the
scan statistic is calculated in each case, comparing the values from the real and
random data sets to obtain a hypothesis test.

While computer intensive, the Monte Carlo approach need not be overly so.
In this chapter, we present a set of efficient algorithms which can be used to
calculate the spatial scan statistic for a set of different models with a circular
window. One of these with a continuously variable radius, required 163 minutes
of computing time on a 100 MHz Pentium PC, when applied to 65,040 cases of
melanoma in the 3,053 counties of the continental United States.

Section 14.2 is essentially a review of the existing literature, while Sec-
tion 14.3 presents mostly new material. Section 14.4 describes how the spatial
sean statistic can be utilized in practice in an attempt to inspire its use in
current as well as new areas of application.

14.2 Models

14.2.1 A general model

As mentioned above, the three basic properties of the scan statistic are the
geometry of the area being scanned, the probability distribution generating
events under the null hypothesis, and the shapes and sizes of the scanning
window. ‘

Kulldorff (1997) defined a general model for the multidimensional scan
statistic. Let A be the area in which events may occur, a subset of Buclidean
space where different dimensions may represent either physical space or time.
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For example, A could be particular geographical area during a ten-year period,
where events are recorded both geographically and temporally.

On A define a measure y, representing a known underlying intensity that
generates events under the null hypothesis. For a homogeneous Poisson process
on a rectangle 4, we have u(z} = A for all z € A and some constant A. The
measure could also be discrete, so that it is only positive on a finite number
of population points, where p(B) is the combined measure of the population
points located in area B C A. We require that wi{B) > 0 for all areas B.

Let X denote a spatial point process where X (B) is the random number
of events in the set B € A. Two different probability models are considered,
based on Bernoulli counts and the Poisson process, respectively.

For the Bernoulli model, we consider only discrete measures p such that
4(B) is an integer for all subsets B C A. Each unit of measure corresponds to
an “entity” or “individual” who could be in either one of two states, for example
with or without some disease, or being of a certain species or not. Individuals
in one of these states are defined as events, and the location of those individuals
constitute the point process. Under the null hypothesis, the number of events
in any given area is binomially distributed, so that X (B) ~ Bin(u(B),p) for
some value p and for all sets B C A.

For the Poisson model, events are generated by a homogeneous or nonhomo-
geneous Poisson process. Under the null hypothesis, X (B) ~ Poisson(pu(B)),
for some vaiue p and for all sets B C A. The measure p may either be de-
fined continuously so that events may occur anywhere, or discretely so that
events may occur only at prespecified locations, or as a combination of the two.
The discrete case is useful when we are dealing with individual counts or with
aggregated data.

The window of a scan statistic is often thought of as an interval, area, or
volume of fixed size and shape, which then moves across the study area. As it
moves, it defines a collection W of zones W C A. To be more general, we allow
for windows of variable size and shape, by defining the window as a collection
W of zones W C A of any size and shape. What defines it as a scan statistic is
that the different zones overlap each other and jointly cover the whole area A,

Conditioning on the observed total number of events, X (A), the definition
of the scan statistic is the maximum likelihood ratio over all possible zones

_ maxwewLW) _ _ L(W)
Lg wew Ly

1

Sw (14.1)
where L(W) is the likelihood function for zone W, expressing how likely the
observed data are given a differential rate of events within and outside the zone,
and where Lg is the likelihood function under the null hypothesis.

Let X(A\W) = X{(A) - X(W) and p(A\ W) = p(4) — w(W). For the
Bernoulli model,



306 ‘ Martin Kulldorff

()™ (3 () -

(%}Z)X(A) (1 _ %)#{A)—x(m
P # (14.2)

i X(W)/u(W) > X(A\W)/u{A\ W), and L(W) = 1 otherwise. For the
Poisson model,
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if X(W)/u(W) > X(A\W)/p(A\W), and L(W) = 1 otherwise. The expression
X (W) /(W) > X(A\ W)/u(A\ W) simply states that there are more than
the expected number of events within the window as compared to outside the
window. If we were scanning for areas with a low number of events, then “>”"
would change to “<.” For details and derivations as a likelihood ratio test, see
Kulldorff (1997), who has also proved some optimal properties for these test
statistics,

When the window size is fixed in terms of the expected number of events,
that is, if p(W) = p(W’) for all W, W' € W, then the scan statistic is

Sw = max X(W),

the maximum number of events in the window over all possible locations. Note
that 555, # Sw, but for any two realizations of the point process, say w and
wa, S}y (w1) > Siy(we) if and only if Sw(wi) > Sw(ws). This means that, when
the window size is fixed, then a hypothesis test based on S;4 is identical to one
based on Sw.

For a Poisson model with continuous measure, a lower bound on the window
size is needed. If not, then a window containing a sequence of increasingly
smaller zones all containing the same event will in the limit give an infinite
valued test statistic. It is also natural to put an upper bound on the window
size. A window W that contains almost all of A makes little sense, and should
be interpreted as a lack of events outside of W rather than as an excess inside.

14.2.2 Special cases

Both one and multidimensional scan statistics are special cases of the above
model. Many features of it originated in connection with one-dimensional scan
statistics: see, for example, Saperstein (1972), Naus (1974), Weinstock (1981),
VWallenstein, Weinberg, and Gould (1989b), and Glaz and Naus (1991). Here,
we review the multi-dimensional literature.



Spatial Scan Statistics 7 307

In terms of the area A being scanned, Naus (1965b), Loader (1991), Alm
(1997, 1998) and Anderson and Titterington (1997) all considered a rectangle.
Alm (1998) also looked at a three-dimensional rectangular volume. Chen and
Glaz (1996) looked at a regular grid of discrete points within a rectangular area.
Turnbull et al. (1990) used an irregular grid, where points may be anywhere
within an arbitrarily shaped area.

Under the null hypothesis, Naus (1965b), Loader (1991), and Alm (1997,
1998} locked at a homogeneous Poisson process, Turnbull et al (1990) con-
sidered a nonhomegeneous Poisson process, while Anderson and Titterington
(1997) considered both types. Chen and Glaz (1996) considered a Bernoulli
model.

As for the scanning window, Naus (1965b), Loader (1991), Chen and Glaz
(1996}, Alm (1997, 1998) and Anderson and Titterington (1997) all considered
rectangles. In addition, Alm (1997, 1998) also locked at circles, triangles, and
other convex shapes. Turmbull et al. (1990) considered a circular window
centered at any of the grid points making up the data. The window is, in all
cases, of fixed shape as well as of fixed size in terms of the expected number
of events, with the exception of Loader (1991), who also considered a variable
size window.

In terms of applications, the general model has been applied in a number of
different settings, the first of which was presented at the SPRUCE conference
in 1992 and later published by Kulldorff and Nagarwalla (1995). For all of
these, the data are located on an irregular grid within an arbitrarily shaped
area. Kulldorff and Nagarwalla (1995) and Section 6.1 of Kulldorff (1997)
used the Bernoulli model, while Section 6.2 of Kulldorff (1997), Hjalmars et
al. (1996), Kulldorff et al. (1997, 1998), and Walsh and Fenster (1997) used a
nonhomogeneous Poisson process. In terms of the scanning window, all used a
variable size circle centered on the grid points, except for Kulldorff et al. (1998),
who used a three-dimensional cylinder where the size of both the base and the
height is variable independently of each other.

The choice of scan statistic will depend on the particular application at
hand, a topic we will turn to in Section 14.4.

14.2.3 Related methods

As part of a “geographical analysis machine,” Openshaw et al. (1987) used a
number of overlapping circular zones of different radii. The purpose is the same
as with a spatial scan statistic, to detect clusters of events, but a separate test
is performed for each of the many zones. This leads to multiple testing, and
even under the null hypothesis we would expect a large number of “significant”
clusters, but as a descriptive geographical analysis tool the method is useful.
Turnbull ef al. (1990) solved the problem of the multiple testing for circles
with fixed expected number of cases, while Kulldorff and Nagarwalla (1995)
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and Kulldorff (1997) solved it for variable size circles.

Priebe (1998) proposed a spatial scan statistic for stochastic scan partitions.
In a two-step procedure, one set of data is first used to create a set of non-
overlapping zones, called scan partitions, while another set of data containing
the events is used to see if any of these partitions have a statistically significant
excess of events. Because the zones are nonoverlapping, the calculations for the
second part are more simple than for a standard scan statistic. It is necessary
to have the additional data set though, used in the first step, and under the
null hypothesis the two data sets need to be independent of each other for the
test $o be valid.

In other related problems, Eggleton and Kermack (1944), Besag and Newell
(1991), Mansson (1996), and many others have studied the number of clusters
of some prespecified magnitude. Lawson (1997) applied a Bayesian framework
to investigate the number of clusters and their locations. Adler (1984), Worsley
et al. (1992), and some others have investigated the supremum of a Gaussian
randem field.

Wallenstein, Gould, and Kleinman (1989a) used a scan statistic in the time
dimension to improve on a previously proposed space-time clustering test, but
the test itself is not a scan statistic. Rather than taking a maximum over
the geographical zones, the degree of clustering in each zone is summed over all
zones, making it a global clustering test. Such tests are useful for quite different
purposes, when the locations of clusters are not of interest.

14.3 Calculations

14.3.1 Probabilistic approximations

The mathematics for obtaining the distribution of the scan statistic is quite
complex, and exact derivations have proved elusive for all but the simplest
scenarios. There are some very interesting and impressive probabilistic approx-
imations though. Starting with Naus (1965b), later results have been obtained
by Loader (1991), Chen and Glaz (1996), and Alm (1997,98). Mansson (1996)
has derived some limit results. Details of these developments can be found in
Chapter 5 of this volume by Sven-Erick Alm, and in Chapter 10 by Marianne
Mansson.

14.3.2 Monte Carlo-based hypothesis testing

When probabilistic approximations are not available, Morte Carlo-based hy-
pothesis testing is. In principle, this can be applied to any special case of the
general model presented in Section 14.2, Generating random cases is typically
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not 2 problem, but calculating the value of the test statistic can be a com-
plex undertaking, depending on the model chosen. For the descriptive cluster
detection method described earlier, Openshaw et al. (1987) used a Cray su-
percomputer even though their approach is conceptually simpler than a scan
statistic. By using efficient statistical algorithms, the calculation times can be
substantially reduced.

Monte Carlo-based hypothesis testing was proposed by Dwass (1957}, who
pointed out that the probability of falsely rejecting the null hypothesis is exactly
according to the significance level, in spite of the simulation involved. Mantel
(1967) proposed its use in terms of spatial point processes, while Turnbull et al.
(1990) was the first to use it in the context of a multidimensional scan statistic.
Monte Carlo hypothesis testing for a scan statistic is a four-step procedure:

1. Calculate the value of the test statistic for the real data.

S

. Create a large number of random data sets generated under the null hy-
pothesis.

" 3. Calculate the value of the test statistic for each of the random replications.

4. Sort the values of the test statistic, from the real and random data sets,
and note the rank of the one calculated from the real data set. If it
is ranked in the highest o percent, then reject the null hypothesis at o
percent significance level.

The key in terms of minimizing computing time is Step 3, as it can be
complex in nature, and most of all, because it must be repeated once for each
random replication of the data set. Anderson and Titterington (1997} pre-
sented the following algorithm for a circular window of fixed diameter d on a
homogeneous Poisson process:

Algorithm 14.3.1 (Anderson-Titterington: Circular window. Fixed size. Ho-
mogeneous Poisson process.)

1. Identify the locations (z,y) of two events no more than distance d apart.

2. Construct the two circles of diameter d for which z and y lLe on the
circumference.

3. Identify the number of events that lie on or inside each of the two circles
and let n be the larger of those two numbers.

4. Repeat Steps ! to 3 for all relevant pairs of locations and report the largest
of the resulting n-values as being the scan statistic.
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The complexity of one visit to Step 3 is of the order O(N), where N = X{4),
the total number of events. Steps 1-3 must be repeated O(N?) times for each
of R Monte Carlo replications, so the total complexity is O(RN3). When N is
large, a more efficient algorithm is:

Algorithm 14.3.2 (Circular window. Fixed size. Homogeneous Poisson pro-
cess.)

1. Identify the location = of an event and construct a large circle with radius
d centered at x. Pick an arbitrary location on the large circle, xo, and
denote the angle from x to zg as 0°.

2. Create a smaller circle of radius d/2 within the larger one. Imagine the
smaller circle moving clockwise completely unthin the larger circle in such
a way that T is always on its circumnference. Denote by xq, 0° <a < 360°,
the single point that is on the circumference of both circles, where a is the
angle from T to z,.

3. For each event on or inside the larger circle, note the two angles of the
line from = to £, when the event enters and departs the smaller moving
circle. Sort the angles in increasing order, keeping track of whether the
angle corresponds to an entrance or a departure.

4. For the smaller circle which has both z and zp on its circumference, count
the number of events inside it. Then go through the array of sorted angles
from 0° to 360°, adding one to the count for each entrance, subtracting
one for each departure. Denote the mazimum count by n.

5. Repeat Steps 1 to 4 for all events, and report the largest of the resulting
n-values as the scan statistic.

6. Repeat Steps 1 to 5 for each Monte Carlo replication.

Each visit to Steps 2 and 4 is O(N) while the sorting in Step 3 is O(NlogN).
There are N iterations of Steps 1 to 5 for each of R replications, and hence the
total complexity is O(RN}O(N) + O(NlogN) + O(N)] = O(RN?%logN).

In most practical applications, the cluster size is unknown a priori. For a
homogeneous Poisson process, the simplest algorithm to program would be to
pick all triplets of events, in turn, and for each triplet construct the circle for
which all three events lie on the circumference, then counting the number of
events within that circle. Based on the number of events and-the circle size, it
is then possible to calculate the likelihood according to (14.3), and the largest
likelihood over all possible triplets is the scan statistic. Such an algorithm
is O(RN*). A more efficient algorithm, with complexity O(RN3logN), is as
follows.
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Algorithm 14.3.3 (Circular window. Variable size. Homogeneous Poisson
process.)

1. Identify the locations (z,y) of two events, and construct the straight line
L between the two where each point on the line is equal distance from
and y. Denote one end of the line as the left end.

2 For each remaining event z, construct the circle such that all of (x,y,2)
lie on the circumference. Note where on L lies the circle centroid cor-
responding to z, and whether event z enters or departs the circle as the
centroid moves toward the left.

8. Sort the circle centroids on L from right to left, keeping track of whether
that centroid corresponds to an entrance or @ departure.

{. Calculate the number of events in the circle with its centroid farthest to
the right, as well as the circle size. Then move doun the sorted array of
circles centroids adding or subtracting evenls as they enter or depart the
circle. For each circular area W, requster the number of evenls n as well
os the circle measure p(W) = fy 1 dy = unr?, where T is the radius.

5. Repeat Steps 1 to 4 for all pairs of events, and report the largest likelihood
based on all (n, u(W))-pairs as the scan statistic, where the likelihood is
calculated according to (14.3)-

6. Repeat Steps I to 5 for each Monte Carlo replication.

So far, we have presented algorithms for homogeneous Poisson processes. A
simple case of a nonhomogeneous Poisson process is a gradual linear shift in
intensity so that u(z) = a+bx for some & and b. Algorithm 14.3.3 can be easily
modified to account for this by calculating the measure of the circular area W
centered at z as u(W) = fy p(y)dy = u(z)rridz, where r is the circle radius.

Another form of nonhomogeneity is the discrete case in which the measure
is concentrated on a finite set of population points. The following algorithm is
similar to Algorithm 14.3.3 but based on the location of the population points
containing positive measure, rather than on the location of events. We can no
longer calculate the measure simply from the circle size, and hence, we need
to keep track of the amount of measure in the window simultaneously with the
number of events.

Algorithm 14.3.4 (Circular window. Variable size. Discrete nonhomoge-
neous Bernoulli or Poisson process.)

1. Identify the locations (z,y) of two population points, and construct the
straight line L between the two where each point on the line 1s equal dis-
tance from T and y. Denote one end of the line as the left end.
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For each remaining population point z, construct the circle such that all
of (z,y, z) lie on the circumference. Note where on L lies the circle cen-
troid and whether the population point enters or departs the circle as the
centrotd moves toward the left.

Sort the circle centroids located on L from right to left, keeping track of
whether that centrotd corresponds to an entrance or depariure.

Calculate the number of events n in the circle with its centroid farthest to
the right on the line, as well as the measure (W) for that circle. Then
move down the sorted array of circles centroids adding and subtracting
events and measure as populetion points enter and depart the circle. For
each circular area W, register the number of events n as well as the pop-
ulation measure u(W).

Repeat Steps 1 to 4 for all pairs of population points, and report the largest
likelthood based on all (n, u(W))-pairs as the scan statistic, where the
likelihood is calculated according to (14.2) in the case of a Bernoulli model,
and according to (14.3) for the Poisson model.

6. Repeat Steps 1 to 5 for each Monte Carlo replication.

The complexity of this algorithm is O(RM3logM)), where M is the number of
population points.

For most applications, it is not crucial to include all possible circles in the

set of zones constituting the window, and an alternative is to use only a subset
of closely overlapping circles. This reduces the computing time. In the following
two algorithms, the window contains only those circles that are centered at any
of a number of prespecified irregular grid points. The radius of the circles still
vary continuously.

Algorithm 14.3.5 (Circular window. Variable size. Circle centroids on grid.
Homogeneous Poisson process.)

1. Pick a grid point. Cualculate the distance to the different events and sort

in increasing order.

Create a circle centered at the grid point end continuously increase the
radius. For each event entering the circle, note the number of events n
and the measure (W) = unr? inside the circle.

3. Repeat Steps ! and 2 for each grid point. Report the largest likelihood

based on ali (n, u(W))-pairs as the scan statistic, where the likelihood 15
calculated according to (14.3).

4. Repeat Steps I to 3 for each Monte Carlo replication.
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The complexity of this algorithm is O(RGNlogN), where G is the number of
grid points. For a discrete nonhomogeneous process, we have the following:

Algorithm 14.3.6 (Circular window. Variable size. Circle centroids on grid.
Discrete nonhomogeneous Bernoulli or Poisson process.)

1. Pick a grid point. Calculate the distance to the different population points
and sort those in increasing order. Memorize the sorted population points
in an array.

2. Repeat Step 1 for each grid point.
3. Pick a grid point.

4. Create a circle centered at the grid point and continuously increase the
radius. For each population point entering the circle, update the number
of events n and the measure u(W) inside the circular area W.

5. Repeat Steps 3 and 4 for each grid point. Report the largest likelihood
based on all (n, u{(W))-pairs as the scan statistic, where the likelihood is
calculated according to (14.2) or {14.3).

6. Repeat Steps 3 to 5§ for each Monte Carlo replication.

The complexity of Steps 1 and 2 is O(GMliogM}, as this does not have to be
repeated for each Monte Carlo replication. The complexity of Steps 3 to 6 is
O(RGM).

Algorithms 14.3.5 and 14.3.6 also work for three-dimensional spherical win-
dows by simply defining the population points in three-dimensional space. The
complexity remains the same but for a complete coverage, the number of grid
points G may have to be larger.

In space-time applications, one option is simply to define time as a third
dimension and use a spherical window on that three-dimensional space. One
problem with this is that the result will depend on the relative units of spatial
and temporal distances. Another problem is that a sphere would represent a
cluster starting with zero spatial size, then growing steadily over time until
a maximum spatial size is reached, after which it gradually shrinks back to
zero size again. [t is more natural to scan for clusters using the intersection
of a spatial circle and a temporal interval, leading to a cylindrical window.
Algorithm 14.3.6 can be adjusted for this purpose, if for each geographical
circle, we also scan the time-dimension using a variable size temporal interval.
It also means that the geographical and temporal size can vary independently of
each other. The complexity of Steps 3 to 6 then becomes O(RGM N?) if exact
times are known, and O{RGMI?) if times are aggregated into I time intervals.

Algorithms 14.3.1 to 14.3.6 extend to circular windows on the surface of a
sphere, by simply defining the events and population points in three dimensions
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on the spherical surface, and by adjusting the calculations of circle sizes and
distances accordingly. This is very useful for geographical applications, avoiding
the need for two-dimensional map projections.

Scanning for low rates can also be handled by any of the mentioned algo-
rithms. For Algorithms 14.3.4 and 14.3.6, it is just a question of changing the
sign of the inequality when calculating the likelihood L(W). For the other al-
gorithms, it is also necessary to subtract the number of events on the border of
the circle from the circle total.

A circular window has the advantage of being invariant under a rotation
of the space. There are applications though where other shapes are of inter-
est. Anderson and Titterington (1997) gave an O(RN?) algorithm for a square
window of fixed size with sides parallel to the axes of the coordinate system.,
A scan statistic with a fixed shape variable size ellipsoidic window can be cal-
culated using any of Algorithms 14.3.3 to 14.3.6, by rescaling one of the axes
in the underlying coordinate system. We leave it for future research to present
algorithms for other models.

14.3.3 Software

For certain multidimensional scan statistics, Kulldorff and Williams (1997) have
developed SaTScan. This software is available free of charge from the authors,
or from the World Wide Web at http://dcp.nci.nih.gov/BB/SaTScan. htnl.

SaTScan uses Algorithm 14.3.6, and is based on a nonhomogeneous Poisson
process defined on an irregular grid; it can be used to analyze the following
types of multidimensional scan statistics: (i} a scan statistic on the plane with
a circular window of variable size with centroids on an arbitrarily defined regular
or irregular grid, (ii} same on the surface of a sphere such as the earth, (ili) a
three-dimensional scan statistic with variable size spheric windows centered on
an arbitrary irregular grid, (iv) a space-time scan statistic with a variable size
cylinder, where the base of the circle corresponds to a geographical area, and
the height to a time interval, and where the sizes of the circle and interval are
variable independently of each other.

The software will, in all cases, adjust for any number of covariates specified
by the user, and it is possible to scan for areas with a large number of events
as well as for areas with a low number of events. Certain one-dimensional scan
statistics can also be analyzed by putting all data on a single line. A future
version will also include the Bernoulli model.

Using SaTScan, the calculations for the New Mexico example below took 8
seconds on a 100 MHz Pentium PC. With 1175 events in only 32 census areas, it
is a rather small data set though. For the same type of analysis but with 65,040
cases of melanoma in the United States, aggregated to 3053 counties, SaTScan
used 163 minutes of computer time when the maximum window size was set to
50% of the total, and 80 minutes when it was set to 10%. For 1592 cases of
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jeukemia in 2507 Swedish parishes, it used 62 and 15 minutes, respectively. The
cylinder based space-time scan statistic used 21 hours for the Swedish data set
with years as the temporal unit and 10% as the maximum geographic window
size. The number of Monte Carlo replications were in all cases 939.

This shows that the computational requirements for the spatial scan statistic
is quite reasonable in practical applications with very large data sets.

14.4 Applications

14.4.1 Epidemiology

There is a long history of geographical surveillance of disease by publishing
disease atlases. If there are areas with exceptionally high rates, they may
give us clues to the etiology of the disease, it may indicate areas where health
care needs improvement, or it may indicate areas to be targeted for preventive
measures. In those atlases that are not purely descriptive, analysis is often done
by dividing the study region into nonoverlapping districts, making a separate
test of hypothesis for each district to see if it has an excess incidence or mortality
[Choynowski (1959)]. With a spatial or space-time scan statistic, we can do the
surveillance adjusting for the multiplicity of possible cluster locations, without
being limited by the boundaries of prespecified districts, and without defining
the size of potential cluster a priori.

Events may be cases diagnosed of some disease or deaths due to that dis-
ease. The measure is by nature nonhomogeneous, reflecting the geographical
distribution of the population at risk. In most situations, we want to adjust
for covariates that are known risk factors such as age or sex. We might have
individual locations for cases and all non-cases, or of cases and a random set
of controls, but more often the data are aggregated at some small geographical
level such as census tracts, parishes or postal code areas. In either case, we can
use Algorithm 14.3.4 or 14.3.6. :

If the popul’ation at risk is all births and the events are occurrences of sudden
infant death syndrome [Kutldorff (1997)] or birth defects, then we should use the
Bernoulli model. If on the other hand, we are looking at fatal cardiac arrest in
a population, we choose the Poisson model since such individuals are no longer
part of the population numbers after the event occurs. Most applications fall
somewhere in between the two, but whenever the number of events is small
compared to the population at risk, the two models approximate each other so
that either could be chosen.

In terms of practical epidemiological applications, the spatial scan statistic
has been used to study leukemia in Upstate New York by Turnbull et al. (1990)
using a fixed size window, and by Kulldorff and Nagarwalla (1997) using a vari-
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able size window. Hjalmars et al. {1996) have locked at childhood leukemia
incidence in Sweden, Kulldorff (1997) studied sudden infant deaths in North
Carolina, Kulldorff et al. (1997) have looked at breast cancer mortality in the
northeastern United States, while Walsh and Fenster (1997) have studied mor-
tality from systemic sclerosis in the southeastern United States. All these use a
variable size circular window. Using a fixed size square window, Anderson and
Titterington (1997) looked at laryngeal cancer in South Lancashire, England.
The space—time scan statistic, using a variable size cylindrical window, has been
applied to brain cancer incidence in New Mexico by Kulldoiff et al. (1998).

14.4.2 Example: Brain cancer in New Mexico

To give an example, we look at the geographical distribution of brain cancer
incidence in New Mexico. In 1989, a local resident detected an excess of brain
cancer in Los Alamos during the previous year. This cluster alarm was evaluated
statistically by Kulldorff et al. (1998) using a space—time scan statistic, without
finding a significant space~time cluster in Los Alamos. Here, we will use a purely
spatial scan statistic in more of a surveillance setting.

Broken down by age and sex, brain cancer and population data are available
from 1973 to 1992 at the aggregated level of 32 counties. A circular variable
size window was used. The circle centroids are limited to the county centroids,
while the radius varies continuously from zero and up until it includes 50% of
the total population at risk. Using a Poisson model, the analysis is adjusted for
age and sex. One analysis was done scanning for areas with high rates (clusters)
and another scanning for areas with low rates.

When scanning for areas with high rates, a cluster was found in and around
Albuquerque, containing Bernadillo, Cibola-Valencia, Los Alamos, Sandoval,
San Miguel, Santa Fe, Socorro, and Torrance counties {Figure 1.1}, almost half
the total state population. With 642 cases when 583.2 were expected, this area
had a rate 10 percent higher than the New Mexico average, and it is significant
with p = 0.030. As the New Mexico mortality rate was 16 percent lower than
the United States average during 1986-90 [Miller et al. {1993)], this cluster may
indicate that the Albuguerque area is more similar to the rest of the United
States in terms of brain cancer than other parts of New Mexico.

When scanning for areas with low rates, the likelihood took on its maximum
value for Lea and Eddy counties combined (Figure 14.1). With 72 cases when
97.4 were expected, these counties had an incidence rate 26 percent lower than
the state average, with p = 0.221, a nonsignificant result.

When interested in areas with either high or low rates, then we can either
do two one-sided tests as we have done above, or we can do a single two-sided
test, which is recommended. The clusters found will be the same, but not the
p-value. For the two-sided test, p = 0.067.

Note from Figure 14.1 that the detected clusters are not perfect circles even



Spatial Scan Statistics 317

though we used a circular window. This is because the data are aggregated to
the county level, so that all of a county is considered to be within the window
when the centroid is, and vice versa. The only way to obtain perfect circles is

to have non-aggregated data.

T
L

New Mexico

Figure 14.1: Brain cancer incidence in New Mexico 1973-1991: The most
likely cluster around Albuquerque in Bernadillo county (p = 0.030) and the
most likely area with exceptionally low rate in Lea and Eddy counties (p =

0.221)

14.4.3 Medical imaging

In medical imaging, the aim may be to detect tumors using mammography, or
areas of activation in a brain scan related to certain physical or mental activities.
There are applications in both two and three dimensions. Priebe (1998) applied
his sean statistic based on random scan partitions on mammography images,
looking for clusters of breast calcifications, and using the texture of the breast
to define the scan partitions. Worsley et al. (1992) and others have looked at
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the supremum of a Gaussian random field to determine centers of activity in
the brain. The multidimensional scan statistic is a complementary approach to
these problems, where each specific application will determine the best method
to use.

14.4.4 Astronomy

The three-dimensional scan statistic can be used for two different types of as-
tronomy problems. We could be interested to see if stars, galaxies, or some
other type of heavenly object are randomly distributed, or whether there are
significant local clusters. This leads to a homogeneous Poisson model and Al-
gorithm 14.3.5. It can also be of interest to know whether a particular type of
star or galaxy is randomly distributed after adjusting for the locations of all
stars/galaxies. Then we should use the nonhomogeneous Bernoulli model and
Algorithm 14.3.6.

14.4.5 Archaeology and history

Alt and Vach (1991) studied the location of graves containing individual, with
a certain genetically determined odontological feature, comparing them to the
locations of all graves within a prehistoric burial site. The purpose was to see if
biologically related persons, who are more likely to share the same odontological
feature, were buried close to each other. Using a test for global clustering, their
main purpose was to test for spatial correlation without any interest in cluster
locations. If we are interested in the latter, we would instead use a spatial
scan statistic based on a discrete Bernoulli model with calculations based on
Algorithms 14.3.4 or 14.3.6.

Other potential archaeological and historical applications include the geo-
graphical distribution of a certain type of pottery as compared to the distribu-
tion of all discovered pottery, to locate areas where that type is significantly
abundant, the geographical location of cities or castles in relation to the pop-
ulation distribution, or the geographical distribution of villages with a certain
name ending as compared to the distribution of all villages.

14.4.6 Urban and regional planning

Post offices, elementary schools, voting locations and many other establish-
ments need to be fairly spread out so they can be conveniently reached by
most people. By applying the spatial scan statistic to look for areas with an
exceptionally low number of them, adjusting for the underlying population dis-
tribution, we may find underserved populations where additional localizations
are warranted. Businesses could also use such an approach to help determine
appropriate locations for restaurants, grocery stores, health clubs, hairdressers,
etc.
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14.4.7 Reconnaissance

Antipersonnel mines injure thousands of people each year long after the war
for which they were intended has ended. It is of great importance to detect
mines so they can be deactivated and removed. It is possible to scan a large
area for possible mines from the air, but of the point locations obtained, only
some will reflect true mines while others will be false detections. By using a
scan statistic, areas most likely to contain mines can be detected.

For such an application, we have a homogeneous Poisson process under the
null hypothesis. As the size of possible minefields are hard to know a priori, we
should use a variable size window, leading to Algorithms 14.3.3 or 14.3.5.

If there are boundary features in the landscape in such a way that it is
unlikely that a minefield would cut across such borders, then it is advantageous
to use those to create scan partitions as suggested by Priebe (1998). That will
increase the power of the test.

Another type of reconnaissance for which a spatial scan statistic can be
useful is when searching for mineral, oil, or uranium deposits.

14.4.8 Power

Wallenstein, Naus, and Glaz (1993, 1994a,b) have provided simple approxima-
tions for the power of the one-dimensional scan statistic against a rectangular
pulse alternative, and Sahu, Bendel, and Sison (1993) have shown that it has
good power against other pulse alternatives such as triangles. This may indi-
cate that multidimensional scan statistics also have good power against pulse
alternatives, but that has never been thoroughly investigated. For one special
case, it has been confirmed by Kulldorff and Nagarwalla (1995) who compared
their model using a variable window size with the fixed window size model used
by Turnbull et al. (1990). The variable size model had good power irrespective
of the true cluster size. The fixed size model had higher power if the specified
size was within about 20 percent of the true cluster size. Neither model had
a problem detecting a square shaped cluster even though both used a circular
window. :
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