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Breast Cancer Clusters in the Northeast United States: A Geographic

Analysis

Martin Kulldorff,*? Eric J. Feuer,' Barry A. Miller,” and Laurence S. Freedman'

High breast cancer mortality rates have been reported in the northeastemn part of the United States, with
recent attention focused on Long Island, New York. In this study, the authors investigate whether the high
breast cancer mortality is evenly spread over the Northeast, in the sense that any observed clusters of deaths
can be explained by chance alone, or whether there are clusters of statistical significance. Demographic data
and age-specific breast cancer mortality rates for women were obtained for all 244 counties in 11 northeastern
states and for the District of Columbia for 1988-1992. A recently developed spatial scan statistic is used, which
searches for clusters of cases without specifying their size or location ahead of time, and which tests for their
statistical significance while adjusting for the multiple testing inherent in such a procedure. The basic analysis
is adjusted for age, with further analyses examining how the results are affected by incorporating race,
urbanicity, and parity as confounding variables. There is a statistically significant and geographically broad
cluster of breast cancer deaths in the New York City-Philadelphia, Pennsylvania, metropolitan area (p =
0.0001), which has a 7.4% higher mortality rate than the rest of the Northeast. The cluster remains significant
when race, urbanicity, and/or parity are included as confounding variables. Four smaller subclusters within this
area are also significant on their own strength: Philadelphia with suburbs (p = 0.0001), Long Island (p =
0.0001), central New Jersey (p = 0.0001), and northeastem New Jersey (p = 0.0001). The elevated breast
cancer mortality on Long Island might be viewed less as a unique local phenomenon and more as part of a
more general situation involving large parts of the New York City-Philadelphia metropolitan area. The several
known and hypothesized risk factors for which we could not adjust and that may explain the detected cluster
are most notably age at first birth, age at menarche, age at menopause, breastfeeding, genetic mutations, and

environmental factors. Am J Epidemiol 1997;146:161-70.
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It is well known that breast cancer mortality is
higher in the northeastern part of the United States
compared with the rest of the country (1-3). During
1988-1992, the 11 most northeastern states and the
District of Columbia had a mortality rate 15.6 percent
higher than the remaining 39 states. When ranking the
50 states and the District of Columbia, the top eight
were in the Northeast, with Maryland, Vermont, Con-
necticut, and Maine ranked 11, 14, 20, and 22, respec-
tively (1). There have also been reports of more local-
ized clusters of the disease, most notably on Long
Island, New York (4-6).

The high mortality rates from breast cancer on Long
Island, as well as public concern about the environ-
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ment, prompted the US Congress to mandate an in-
vestigation by the National Cancer Institute. The in-
vestigation is to include Long Island as well as the two
northeastern counties with the highest mortality rates
during 1983-1987 and at least 30 cases (Tolland
County in Connecticut and Schoharie County in up-
state New York) (7).

Typically with reported clusters, a statistical test is
performed to assess whether the number of cases is
significantly greater than what would be expected.
This is often done for the cases in one specific area
(e.g., Long Island); however, if that area is chosen
because it has many cases, then this approach intro-
duces preselection bias, since the same cases are used
to define the hypothesis as well as to test it.

To evaluate an area with an apparently increased
disease incidence or mortality rate, a more appropriate
statistical approach is to use the spatial scan statistic
(8—-10). The method scans a larger encompassing area
for possible disease clusters without a priori specifi-
cation of their location or size; it identifies the approx-
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imate location of clusters, and it performs a signifi-
cance test for each cluster in a way that compensates
for the multiple testing inherent in such a procedure.

If we detect significant clusters using this method, a
logical next step is to see whether they can be ex-
plained by known or suspected risk factors. There are
a number of such risk factors for breast cancer (11,
12); and within the limit imposed by the availability of
population-based data, we can adjust for these factors
to see whether they explain the detected clusters. In
this study we report, in addition to age, adjustments for
parity (13), race (1), and urbanicity (14, 15).

MATERIALS AND METHODS
Geographic, population, and mortality data

The geographic area under study consists of Maine,
New Hampshire, Vermont, Massachusetts, Rhode Is-
land, Connecticut, New York, New Jersey, Pennsyl-
vania, Delaware, Maryland, and the District of Colum-
bia. Herein, we refer to this collection of states as the
Northeast. The analysis is based on the 245 counties
and county equivalents in this area (16). The statistical
method requires that we specify the geographic posi-
tion of each county, and we used the latitude and
longitude of the county centroid as specified by the
1990 Census (17). For three counties, the census cen-
troids were replaced by visual estimation to better
reflect the geographic and population-weighted cen-
troid, since the former had been greatly influenced by
a small outlying island (e.g., Block Island in Wash-
ington County, Rhode Island).

We used mortality data from publicly available
computer tapes provided by the National Center for
Health Statistics. During 1988-1992, there were a
total of 58,943 deaths from breast cancer among
women in the Northeast. Of these, 7,076 were younger
than 50 years. For each death, we have data on the
county of residence, age at death, and race.

Demographic data were obtained from the 1994 cen-
sus revision, taking the average July 1 population esti-
mates for 1988-1992. For each county, we obtained the
total female population subdivided by age group (5-year
intervals) and by race (white, black, other). The numbers
are not adjusted for the census undercount. The average
total population was 29,535,210 women.

Statistical methodology

To test for the presence of disease clusters and to
identify their approximate location, we used a spatial
scan statistic (8—10). We assumed the number of
deaths in each county to be Poisson distributed. The
method tests the null hypothesis that within any age
group, the risk of death from breast cancer is the same

in all counties. This means that the expected age-
adjusted mortality rate is constant over the whole area.

The method imposes a circular window on the map
and allows its center to move over the area so that at
any given position, the window includes different sets
of neighboring counties. If the window contains the
centroid of a county, then that whole county is in-
cluded in the window. For practical reasons, the center
of the window is positioned only at the 245 county
centroids; and at each position, the radius of the cir-
cular window is varied continuously from zero up to a
maximum radius so that the window never includes
more than 50 percent of the total population. In this
way, the circular window is flexible both in location
and size. In total, the method creates a very large
number of distinct circular windows, each with a dif-
ferent set of neighboring counties within it, and each a
possible candidate for containing a cluster of breast
cancer deaths. For each window, the method tests the
null hypothesis against the alternative hypothesis that
there is an elevated risk of breast cancer mortality
within, compared with outside, the window.

Under the Poisson assumption, the likelihood func-
tion for a specific window is proportional to

= e
— n

W \N = K,

where N is the total number of deaths over the whole
area, n is the number of deaths within the window, and
is the indirectly age-adjusted expected number of deaths
within the window under the null-hypothesis. / is an
indicator function that is equal to 1 when the window has
more deaths than expected under the null hypothesis, and
0 otherwise. Note that n/pand (N — n)/(N — pu)are
proportional to the age-standardized mortality ratios
within and outside the window, respectively. For fixed N
and p, the likelihood increases with the number of
deaths, n, in the window.

This likelihood is maximized over all the windows,
identifying the window that constitutes the most likely
disease cluster. The likelihood ratio for this window is
noted and constitutes the maximum likelihood ratio
test statistic. Its distribution under the null hypothesis
and its corresponding simulated p value is obtained by
repeating the same analytic exercise on a large number
(we chose 9,999) of random replications of the data set
generated under the null hypothesis in a Monte Carlo
simulation (18). The calculations were performed us-
ing the program SaTScan (19), designed specifically
to implement the spatial scan statistic.

Compared with other statistical methods for spatial
epidemiology (20~22), the spatial scan statistic has the
following features that make it particularly suitable as a
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screening tool for evaluating reported disease clusters:

1) It adjusts both for the inhomogeneous population
density and for any number of confounding vari-
ables (in the description above, we used the term
“age-adjusted expected ratio,” but this can be ex-
tended to include adjusting for other confounders as
explained subsequently.

2) By searching for clusters without specifying their
size or location, the method ameliorates the problem
of preselection bias.

3) The likelihood ratio-based test statistic takes mul-
tiple testing into account and delivers a single p
value for the test of the null hypothesis.

4) If the null hypothesis is rejected, we can specify
the approximate location of the cluster that caused
the rejection.

In addition to the most likely cluster, the method
identifies secondary clusters in the data set and can
order them according to their likelihood ratio. There
will always be sets of counties that overlap in part with
the most likely cluster and that have a likelihood
almost as high, since adding or subtracting a few
counties does not normally change the likelihood
greatly. We do not report on all clusters of this type
since most of them provide little additional informa-
tion; however, their existence means that although we
can pinpoint the general location of a cluster, its exact
boundaries must remain uncertain. Thus we always
refer to the “approximate location” of a cluster. Some-
times it is of interest to see whether a significant
cluster can be decomposed into two nonoverlapping
subclusters, each of which would allow rejection of
the null hypothesis on its own strength. One way to do
this, which we have adopted, is to continuously limit
the maximum cluster size in a sequential manner until
no additional partitions can be made.

There also may be secondary clusters that do not
overlap the most likely cluster. We report secondary
clusters of this type if the likelihood ratio is larger than
the likelihood ratio for the most likely cluster for at
least one data set simulated under the null hypothesis
(i.e., p < 1.0). It can be shown that the simulated p
values for secondary clusters are conservative, i.e.,
they overestimate their true values (9).

Confounding variables

To adjust the analysis for any number of confound-
ing variables, we used indirect standardization. The
mortality rates for each cross-classification of the con-
founding variables were pooled across the entire
Northeast and served as our standard. These rates were
then applied to the appropriate population in each
county to obtain confounder-adjusted expected counts.
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To incorporate urbanicity, we classified each county as
either urban or rural; and by knowing the county of
residence for each individual, we could then proceed
with indirect standardization. For the classification, we
first selected all counties that are located within a met-
ropolitan statistical area, a consolidated metropolitan sta-
tistical area, or a New England county metropolitan area
with a total population of 500,000 or more according to
the 1990 Census (17). We then used a concept of the US
Department of Agriculture whereby metropolitan coun-
ties are divided into central and fringe metropolitan coun-
ties (23). Only the former were classified as urban, and
they are marked on the map in figure 1.

In one analysis, we adjusted for parity, the number of
live births that a woman has had during her lifetime.
Because information on parity was not available from
death certificates or for the general population, we esti-
mated mortality rates as a function of parity using the
relative risks for breast cancer incidence calculated by
Layde et al. (13) from the Cancer and Steroid Hormone
study. These risks are given in figure 2 and were adjusted
for age, history of surgically confirmed benign breast
disease, family history of breast cancer, menopausal sta-
tus, irregular menses as a teenager, and adiposity.

From the 1990 Census, data are available on the av-
erage number of children bom to the women in each
county in each of five age groups. Under an assumption
that each additional child lowers the risk of breast cancer
by the same number of percentage points, we calculated
the parity-adjusted expected number of deaths based on
the estimated relative risks. This assumption cannot hold
throughout the entire range of parity since this would
mean that women with many children would have a
negative risk; however, as can be seen in figure 2, it gives
a reasonable approximation for the range of no children
to six children where the vast majority of women fall. By
fitting a linear regression line, we estimated a risk reduc-
tion of 8.8 percent per child.

It has been suggested that breast cancer may have a
different etiology among pre- and postmenopausal
women. For this reason, we also conducted separate
analyses for women older and younger than 50 years.

RESULTS

In figure 3, we show the indirectly age-adjusted
mortality rates for each county, depicting the percent-
age above or below the Northeast average. The results
of applying the age-adjusted scan statistic to these data
are shown in figure 4 and table 1, part A. The method
found the most likely cluster in a region encompassing
the New York City-Philadelphia metropolitan area
(figure 4), with a mortality rate 7.4 percent higher than
in the rest of the Northeast. This cluster was signifi-
cant at the level p = 0.0001.
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FIGURE 1. Counties classified as urban in the Northeast United States.

Additional areas in the Northeast that had higher
than average mortality rates during 1988--1992 were
Buffalo, the District of Columbia, Boston with sub-
urbs, and eastern Maine. However, none of these had
a statistically significant excess.

As mentioned in Materials and Methods, there are
often many windows that overlap with the most likely
cluster and that have only slightly lower likelihood
values. Thus the exact borders of the cluster must
remain uncertain. For example, in the age-adjusted
analysis, with a log likelihood ratio of 34.4, the
Philadelphia-New Jersey cluster was almost as strong
as the larger Philadelphia-New York City cluster. This
means that moving just a handful of cases could have
changed the specific borders of the most likely cluster.
Moreover, there are some counties within the most
likely cluster with mortality rates considerably below
the Northeast average, as well as counties just outside
the cluster with a considerably higher rate (figures 3
and 4). The correct interpretation of the analysis is as
follows: First, within the northeast United States, there
is strong evidence for the existence of at least one
disease cluster. Second, this cluster appears to include,
but is not confined to, Long Island.
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FIGURE 2. The relative risk of breast cancer incidence among
women in relation to parity, as estimated by Layde et al. {(13), and a
linear least square fit to that data.
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FIGURE 3. Age-adjusted breast cancer mortality rates among women in the Northeast United States, 1988-1992.

We further examined the most likely cluster by
determining which smaller subclusters were strong
enough, by themselves, to reject the null hypothesis.
Using the sequential procedure previously described,
four such subclusters emerge: Long Island, northeast
New Jersey, Philadelphia, and central New Jersey.
These are presented in figure 5 and table 1, part A.

Schoharie and Tolland counties were not identified as
either a primary or a secondary cluster because the num-
ber of cases were 19.8 and 16.3 percent less than those
expected, respectively. Hence, the excess number of
deaths that were seen in these counties in 1983-1987,
and on which the congressional selection criteria were
applied, were not repeated during 1988-1992. If the
same criteria for selecting two counties had been used
during this latter period, then Essex County in New York
(with Lake Placid) and Hancock County in Maine (con-
taining Acadia National Park) would have been selected,
with 27.3 and 26.3 percent more cases than expected,
respectively. However, as can be seen in table 1, part A,
neither of these was statistically significant.

When incorporating race as a confounding variable in
addition to age, we found the same most likely cluster
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with a slightly higher likelihood value (table 1, part B).
Adjusting for age and parity yielded a most likely cluster
that was smaller in size but in the same general location.
The likelihood ratio decreased from 35.7 to 28.2, indi-
cating that parity may explain some of the excess in the
New York-Philadelphia area; however, the cluster was
still significant (p = 0.0001). The cluster was limited to
Philadelphia, central New Jersey, and Staten Island (fig-
ure 4). The two counties on Long Island, Nassau and
Suffolk, formed a secondary cluster that was also signif-
icant (p = 0.0001) (table 1, part B).

After adjusting for urbanicity, the strength of the
most likely cluster decreased. This is not surprising
since the area contains about half the urban population
in the Northeast and only a few rural counties. As with
the adjustment for age and parity, the most likely
cluster was limited to Philadelphia, central New Jer-
sey, and Staten Island, with Long Island forming a
separate cluster (table 1, part B, and figure 4). Both
clusters were significant (p = 0.0001 and 0.0017,
respectively). Thus, our classification of urbanicity did
not explain the excess of cases observed in the New
York City-Philadelphia metropolitan area. Simulta-
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FIGURE 4. The most likely cluster of breast cancer among woman for the perlod 1988-1992, occurring around New York, New York, and

Philadelphia, Pennsylvania, as well as four secondary clusters.

neous adjustment for age, race, parity, and urbanicity
gave a similar result (not shown).

Women aged 50 years and older represented 86
percent of the total number of breast cancer deaths. In
this age group, the result was essentially the same as
for the entire age range (table 1, part C). The most
likely cluster was the same, and the excess of deaths
was still 7.4 percent, whereas the likelihood ratio was
slightly lower because of the smaller number of deaths
involved.

For women younger than 50, however, the most
likely cluster changed to the District of Columbia
(p = 0.0002) (table 1, part C). After adjusting for race,
the result was no longer significant (p = 0.207).

The New York City-Philadelphia metropolitan area
had an excess of deaths among younger women at 6.9
percent compared with an excess of 7.4 percent in the
older group. Because of the smaller number of deaths,
however, the power of the test was lower. The five
Philadelphia counties (figure 5) appeared as a second-
ary cluster for this age group, with p = 0.016. After
adjusting for race, this cluster was no longer signifi-
cant (table 1, part C).

DISCUSSION

When apparent disease clusters are first reported,
they cause considerable alarm among the population
and are accompanied by demand for immediate action.
In such an atmosphere, it becomes difficult to dispas-
sionately assess the strength of evidence for the exis-
tence of the hypothesized cluster. This difficulty has
been compounded by lack of available statistical meth-
ods for assessing the evidence in a manner that adjusts
for the preselection bias and multiple testing effects
accompanying disease cluster reports. In this paper,
we have presented a new method, the spatial scan
statistic, which provides such an adjustment and ap-
propriately assigns a level of significance to any de-
tected cluster. We have illustrated the use of the
method by applying it to breast cancer mortality in the
Northeast United States, in light of the reported Long
Island cluster. Our method reveals that the increased
breast cancer mortality on Long Island is statistically
significant and suggests that the increase is not con-
fined to this area but extends down to parts of New
Jersey and Philadelphia.

Am J Epidemiol Vol. 146, No. 2, 1997
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TABLE 1. Breast cancer mortality analysis for women in the Northeast United States, 1988-1992, using the spatial scan statistic
Analysis Cluster

0:2?3) Comfounders  Type Locatlon Cases Expected  RR* LLR* e

A All Age M= New York, NY-Philadelphia, PA 24,044 23,040 1.074 357 0.0001

S* Buftalo, NY 1,416 1,280 1.109 71 0.122

S Washington, DC 712 618 1.154 6.9 0.147

S Boston, MA 5,966 5,726 1.047 55 0.398

S Eastern Maine 267 29 1.166 3.0 0.994

SO+ Philadelphia, PA 3,815 3,441 1.116 208 0.0001

SO Long Island, NY 2,935 2,620 1.127 19.2 0.0001

SO Central New Jersay 3,784 3,437 1.108 18.0 0.0001

SO Northeast New Jersey 2,738 2,467 1.115 15.0 0.0001

) Essex, NY 51 40 1.273 14 1
SO Hancock, ME 67 53 1.263 17 1

B All Age, race M New York, NY-Philadelphia, PA 24,044 22,973 1.079 40.7 0.0001
All Age, parity M New Jersey-Philadelphia, PAt 9,873 9,205 1.087 28.2 0.0001

S Long Island, NY 2,835 2,604 1.134 21.2 0.0001

All Age, urban M New Jersey-Philadelphia, PAt 9,873 9,339 1.069 17.8 0.0001

S Long Island, NY 2,935 2,684 1.098 11.8 0.0017

C 250 Age M New York, NY-Philadelphia, PA 20,737 19,862 1.074 31.4 0.0001
<50 Age M Washington, DC 144 87  1.670 15.8 0.0002

S Philadelphia, PA 525 435 1.223 9.4 0.017

<50 Age, race M Washington DC 144 106 1.369 6.3 0.207

S Philadelphia, PAt 753 673 1.132 5.1 0.508

* M, most likely; S, secondary; SO, secondary that overlaps with other more likely cluster; RR, relative risk within the cluster compared

with the rest of the Northeast; LLR, log likelihood ratio.

1 Includes Staten Island, as well as the same Pennsylvania and New Jerssy counties as the larger New York City-Philadelphia cluster
(figure 5), with the exception of Northampton, Sussex, Passaic, Bergen, Atlantic, and Gloucester.
1 In addition to the five Philadelphia counties shown in figure 5, this area also includes Ocean, Mercer, Atlantic, and Monmouth counties.

When a cluster of deaths cannot be dismissed as a
chance occurrence, we need to ask what may be the
underlying causal mechanisms. It is most natural to look
first at some of the known or hypothesized risk factors. In
this study, we were able to adjust for four such factors:
age, race, urbanicity, and parity. The age and race infor-
mation was available for each individual. However, ur-
banicity was available only at the county level, so every-
one in the county is classified in the same category. For
parity, we had only the average for each county, and the
relative risks were obtained from an unrelated case-con-
trol study (13). Hence, the adjustment for these factors in
our analysis is necessarily imprecise.

How robust is the analysis to the estimation of the
effect of parity on breast cancer mortality? As can be
seen from table 1, part B, the likelihood ratio for the
Long Island cluster is actually higher when taking parity
into account, due to a higher level of party there. This
means that no matter how much parity reduces the risk of
breast cancer, it cannot explain the excess of breast
cancer mortality on Long Island. In the New Jersey-
Philadelphia cluster, parity explains about one tenth of
the excess in our model. Even if our estimate of the
protective effect of parity is only half the true reduction
in risk (e.g., 17-18 percent reduction per child), then

Am J Epidemiol Vol. 146, No. 2, 1997

parity would still account for less than 20 percent of the
mortality excess, and the cluster would still be signifi-
cant.

There are many other known or hypothesized risk
factors for breast cancer that we were unable to include in
this population-based analysis. These include age at men-
arche, age at menopause, age at first birth, breastfeeding,
country of birth, genetic disposition/family history, alco-
hol consumption, access to health care, and various en-
vironmental factors. For these to explain the existence of
a cluster, they not only must be true risk factors, but the
population at higher risk also must be proportionally
more abundant where the cluster is detected.

Old age at menarche and young age at menopause
have been shown to reduce the risk of breast cancer
(24). Although there are some regional differences
within the United States, they do not contribute to an
explanation of why rates are high in the Northeast
compared with the rest of the country (25). Since we
do not know the regional variation within the North-
east, however, we cannot tell whether they might
partly explain the observed cluster.

Young age at first full-term pregnancy has also been
shown to have a protective effect (24). Since this
factor is correlated with parity (13), some of its effect
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FIGURE 5. A close-up of the most likely cluster for breast cancer among women in the Northeast United States during 1988-1992, with
four subclusters that are significant on their own strength. Two of the latter are overlapping, with Essex, New Jersey, as a common county.

was probably accounted for in the parity-adjusted
analysis. However, young age at first full-term preg-
nancy also exhibits an independent effect (13) for
which we could not adjust. Others have reported that
age at first full-termn pregnancy is greater in the North-
east than in the rest of the country and that this may
explain some of the Northeast mortality excess (14,
25). We do not know its more local distribution and
hence, whether it would also explain some of the
excess in the New York-Philadelphia area.

Studies have reported that breastfeeding children
reduces a woman’s risk of breast cancer (24, 26) and
that this is an independent effect after adjusting for
parity (13). Breastfeeding rates are known to vary
between countries (26-28), but we have no informa-
tion regarding local variation of breastfeeding prac-
tices in the Northeast.

In a global comparison, breast cancer incidence is
high in North America and northern Europe, medium
in southern Europe and Latin America, and low in
Africa and Asia (29-31). It has been shown that
women migrating from Asia or Latin America bring
with them some of their lower risk of breast cancer
when they move to the United States (32-34). The fact
that Queens (New York), Kings (Brooklyn, New
York), and Hudson (New Jersey) counties have the
largest percentage of foreign-born persons in the
Northeast, between 29 and 36 percent (16), might
explain why these counties have a lower breast cancer
mortality than the surrounding suburbs. At the same
time, immigration from other countries probably does
not explain the general excess in the New York City-
Philadelphia metropolitan area, since most of those

counties have a larger percentage of foreign-born in-
dividuals than the Northeast average (16).

About 0.5 percent of US women are estimated to have
a genetic mutation, increasing their risk of breast cancer
and causing approximately 5 percent of all cases (35).
Such mutations might be more common in the area of the
most likely cluster, especially considering that occur-
rence of one of the specific mutations has been observed
mostly in Ashkenazi Jews (36), who reside relatively
frequently in and around New York City.

The relation between alcohol consumption and breast
cancer is at most modest (37-40). Comparing per capita
alcohol consumption between states, we find that Penn-
sylvania and New York are the lowest in the Northeast
and that New Jersey is seventh of 12 (41). In a study of
alcohol-related admissions during 1989 among Medicare
patients aged 65 years and older, Pennsylvania, New
York, and New Jersey all had lower rates than any of the
other northeastern states (41). These factors combined do
not make alcohol a strong potential candidate for explain-
ing the observed excess of mortality in the New York
City-Philadelphia area.

Access to health care, both in terms of mammogra-
phy and treatment, is a factor that may influence breast
cancer survival and hence breast cancer mortality.
This is a potential explanation for why blacks have a
higher mortality rate, especially in light of the evi-
dence that incidence rates are about the same (for ages
<50 years) or lower (for ages =50 years) among black
than white women (1). Hence, this is one possible
explanation for some of the excess breast cancer mor-
tality among young women in the District of Colum-
bia. However, substantial parts of the New York City-
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Philadelphia cluster consist of affluent urban suburbs
with good access to health care (16).

A number of environmental factors have been pro-
posed as possible causes of increased risk for breast
cancer. These include ionizing radiation (42), organo-
chlorines such as dichloro-diphenyl-trichloro ethane
(DDT), 1,1-dichloro-2,2-bis (p-chlorophenyl) ethyl-
ene (DDE), and polychlorinated biphenyls (PCBs) (43,
44), electromagnetic fields (45-47), polycyclic aro-
matic hydrocarbons (PAHs) (43, 48), excessive expo-
sure to light (47, 49), lack of solar radiation (50, 51),
and hair dyes (42). Only ionizing radiation is generally
considered an established risk factor. The rest are
uncertain, with inconclusive evidence from studies
undertaken so far. Since many of these environmental
factors are likely to have an uneven spatial distribu-
tion, we cannot exclude them as possible explanations
for the detected cluster, although we do not know that
any are excessively common in the New York City-
Philadelphia metropolitan area.

It is important to put the magnitude of the excess risks
observed in this study into perspective. The New York
City-Philadelphia metropolitan area has a 7.4 percent
excess (odds ratio 1.074) compared with the rest of the
Northeast, which in turn has a 12.4 percent excess com-
pared with the rest of the country. This means an excess
of 20.6 percent when comparing the cluster area to the
rest of the United States outside the Northeast.

The significant cluster among women younger than 50
years in the District of Columbia disappears after adjust-
ing for the fact that it has a large black population and
that breast cancer mortality is relatively high among
young black women. Hence, the important problem to
focus on might not be why the rates are so high in the
District, but rather why there is an excess of mortality
among young black women. With the exception of the
District of Columbia, there is no evidence of different
clusters in the two different age groups.

A few statistical points merit special mention. The
analysis should be seen in the context of the whole
area under study. It makes no sense to ascribe a p
value to a specific cluster without relating it to the size
of the area under study, in our case the Northeast.

The fact that we are dealing with data aggregated to
the county level means that we do not have enough
resolution to efficiently detect clusters affecting only a
small part of a county. This could be overcome by
conducting the analysis on a census tract or block
group level, again applying the spatial scan statistic.
Although it would be cumbersome to obtain such data
for the whole of the Northeast, it might be of interest
to conduct such an analysis for parts of the New York
City-Philadelphia metropolitan area.
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Concerning a secondary cluster that is not signifi-
cant, it is important to keep in mind that lack of
significance could be because the result has occurred
truly by chance because the test is conservative or
because the increased risk as well as the power of the
test is too low to detect it. For example, in Buffalo,
New York, with 1,280 expected cases, there is 80
percent power to detect an excess risk of 14 percent.
For a smaller area like Hancock County, Maine, with
53 expected cases, an excess risk of 76 percent is
needed to obtain the same power.

Our geographic analysis is based on mortality data
and residence at time of death. Mortality can be influ-
enced by access to primary and secondary medical
care, quality of treatment, and posttreatment surveil-
lance. Differences in mortality rates in different areas
can result from differences in the geographic distribu-
tion of these clinical variables as well as from differ-
ences in risk factors for disease incidence. In addition,
there is a considerable time lag between exposure to
many of these risk factors and time of death, when a
substantial proportion of individuals may have mi-
grated to another geographic area. Therefore great
caution should be exercised in interpreting the results
of geographic mortality studies, and in particular, ef-
forts to ascribe the cause of a mortality cluster to some
local environmental exposure should be placed under
rigorous scrutiny.

In summary, we have identified a statistically signifi-
cant excess of breast cancer mortality in the New York-
Philadelphia metropolitan area, including Long Island.
We have accounted for some of the known and hypoth-
esized risk factors for breast cancer mortality. Some were
found to be unlikely explanations for the excess, and data
were unavailable to evaluate others. The latter group
includes most notably age at first birth, age at menarche,
age at menopause, access to clinical care, breastfeeding,
genetic mutations, and environmental factors.

More generally, we found the spatial scan statistic to
perform a useful function in this analysis, enabling us
to evaluate more reliably the strength of evidence for
the reported Long Island cluster. The method should
prove extremely helpful when confronting new reports
of disease clusters.
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