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Abstract

As a geographical cluster detection analysis tool, the spatial scan statistic has been

developed for different types of data such as Bernoulli, Poisson, ordinal, exponential

and normal. Another interesting data type is multinomial. For example, one may

want to find clusters where the disease type distribution is statistically significantly

different from the rest of the study region when there are different types of disease.

In this paper, we propose a spatial scan statistic for such data, which is useful for

geographical cluster detection analysis for categorical data without any intrinsic



order information. The proposed method is applied to meningitis data consisting of

five different disease categories to identify areas with distinct disease type patterns

in two counties in the United Kingdom. The performance of the method is evaluated

through a simulation study.

Keywords: categorical data; cluster detection; geographical disease surveillance;

meningitis

1 Introduction

Spatial scan statistics are widely used for geographical cluster detection and inference.

Different types of discrete or continuous data can be analyzed using spatial scan statistics

for Bernoulli, Poisson (Kulldorff, 1997), ordinal (Jung et al., 2007), exponential (Huang

et al., 2007; Cook et al., 2007) and normal (Kulldorff, 2008) models. Bernoulli and

Poisson models are among the most popular models for discrete data in geographical

disease surveillance such as disease prevalence, incidence or mortality. The ordinal model

is used for categorical data with intrinsic order information such as cancer stage or grade.

The exponential model has been developed for survival data (with or without censoring),

and the normal model for continuous outcome such as babies’ birth weight.

Another interesting data type is multinomial. For example, one may be interested in

identifying non-random spatial patterns in the distribution of the types of meningitis in

a study area when there are five different types of the disease. While there is abundant
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literature on the statistical analysis of geographical pattern for count data in spatial

epidemiology (see e.g. Marshall (1991), Elliot et al. (1995) and Moore & Carpenter (1999)

for general review), methods directly applicable to multinomial data are few. An example

is the study by Ohno et al. (1979) who evaluated clustering of categorical areal data

by examining adjacent areas with concordant (i.e. identical) categories using chi-square

tests.

Here, we are interested in finding geographical clusters where the disease type distri-

bution is statistically significantly different from the rest of the map. If the type of disease

has an ordinal structure, the ordinal model can be used. If not, it does not make any sense

to use it. Another option is to dichotomize the types of disease into only two categories

and apply the Bernoulli model, but there is loss of information in dichotomization.

In this paper, we propose a spatial scan statistic for multinomial data, which can be

used for spatial cluster detection analysis for categorical data without intrinsic order infor-

mation. As a motivating example, meningitis data from Nottingham and Derby counties

in the United Kingdom (UK), which contain five different types of the disease, are intro-

duced in Section 2. The data were first analysed using the Bernoulli-based spatial scan

statistic after dichotomization of the disease type. Five separate analyses were performed

on five different dichotomizations of one category versus the others. In Section 3, a spa-

tial scan statistic for multinomial data is described and the analysis results of meningitis

data using the proposed method are presented. As the spatial scan statistics for other

models, the test statistic is based on a likelihood ratio test and evaluated using Monte
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Carlo hypothesis testing. The performance of the proposed method is evaluated through

a simulation study in comparison with the ordinal and Bernoulli models in Section 4. The

paper ends with a general discussion in Section 5.

2 Meningitis Data

2.1 The Data

The meningitis data were collected as part of a national 3 year multi-centre study carried

out by the UK meningococcal carriage group whose objectives were to identify risk factors

for meningococcal carriage among 14,000 teenagers in the UK as well as examining the

effect of meningococcal serogroup C conjugate vaccine that was offered to all persons below

18 years old in the UK. We obtained records for meningitis cases among students from

the selected schools in Nottingham and Derbyshire counties for the years 1999 to 2001.

There were a total of 594 meningitis cases and their locations were linked to the spatial

data using home address postcodes. The spatial data consist of easting and northing in

meters for the centroid of each postcode. Due to some errors in the data (e.g. incorrect

postcodes due to typing errors), 87 cases could not be linked to the spatial data resulting

in 507 total cases for the study. Most cases were assigned to unique locations (postcodes)

while some cases share the same locations. A total of 475 distinct postcodes were used.

The disease was classified into one of the five major categories ST-213 complex, ST-22

complex, ST-23 complex/cluster A3, ST-41/44 complex/lineage 3, and ST-53 complex.
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The number of cases in each category is listed in Table 1.

[Table 1 about here.]

The purpose of the study is to identify non-random spatial patterns in the distribution

of the types of meningitis in the two counties. Especially, we want to identify areas in

which the disease type distribution is statistically significant different from the remaining

areas.

2.2 Cluster Detection Analysis using the Bernoulli Model

As an alternative, the Bernoulli-based spatial scan statistic can be used to search for

clusters with high or low rates of each category of the meningitis type (versus the other

categories) after dichotomization. The Bernoulli model has been described in detail by

Kulldorff (1997) and here we provide a brief summary. Let Z be a scanning window in

a study area and let p and q be the probability of being a case of a particular disease

type inside the window Z and outside the window respectively. The null hypothesis of no

clustering is written as H0 : p = q and the alternative as H0 : p > q for high rates (or

p < q for low rates). The test statistic of the Bernoulli model for a given window Z is

λZ =

(

oZ

nZ

)oZ
(

1 −
oZ

nZ

)nZ−oZ
(

O − oZ

N − nZ

)O−oZ
(

1 −
O − oZ

N − nZ

)(N−nZ)−(O−oZ )

I()

where oZ and nZ are the number of cases of a particular disease type and the num-

ber of all observations respectively inside the window Z, and O and N are the corre-

sponding totals in the whole study area. The indicator function I() is equal to one if
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oZ/nZ > (O− oZ)/(N −nZ) when searching for clusters with high rates and the opposite

inequality applies when searching for clusters with low rates. The region associated with

the maximum of the test statistic is defined as the most likely cluster and the statistical

significance is determined by Monte Carlo hypothesis testing as described by Kulldorff

(1997).

The disease category of meningitis data was dichotomized as 1 vs. the others, 2 vs.

the others, and so on, and the Bernoulli model was applied to each of dichotomizations.

The most likely cluster from each analysis is listed in Table 2. Significant clusters were

detected when the disease category was dichotomized as 1 vs. the others (cluster A) and

5 vs. the others (cluster B). Those clusters are presented in Figure 1. Cluster A is an

area with high rates of category 1 and cluster B is an area with high rates of category 5.

[Table 2 and Figure 1 about here.]

3 Spatial Scan Statistic for Multinomial Data

3.1 Test Statistic

Suppose we have K categories for types of a disease on a study area consisting of I sub-

regions such as counties or postcodes. Let cik be the number of observations belonging

to category k in sub-region i (k = 1, . . . , K, i = 1, . . . , I). The null hypothesis of no

clustering can be expressed as the probability of being in category k is the same in all part

of the study area for all k = 1, . . . , K. Then we search for regions where the disease type
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distribution is statistically significantly different from the remaining regions. The spatial

scan statistic is based on a likelihood ratio test for comparing a potential cluster versus the

remaining areas. The potential cluster is one of the scanning windows constructed first

on a study area. Here, a circular-shaped area centered at the centroid of each sub-region

is considered as a scanning window, which is denoted by Z. We calculate the test statistic

for each scanning window and find the window which maximizes the likelihood ratio test

statistic as the most likely cluster. As described by Jung et al. (2007), the collection of

scanning windows is a parameter space for the cluster, over which the likelihood ratio is

maximized.

The likelihood function for the multinomial model is written as

L(Z, p1, . . . , pK , q1, . . . , qK) ∝

K
∏

k=1

(

∏

i∈Z

pcik

k

∏

i/∈Z

qcik

k

)

where pk and qk are the probabilities of being in category k inside window Z and outside

the window respectively (k = 1, . . . , K). Note that
∑

k pk =
∑

k qk = 1. Under the null

hypothesis, these probabilities are the same for each category.

H0 : p1 = q1, . . . , pK = qK

The alternative hypothesis is that there exists at least one category for which the probabil-

ities are not the same. Let ci(=
∑

k cik) be the total number of observations in sub-region

i, Ck(=
∑

i cik) be the total number of observations in category k, and C(=
∑

k

∑

i cik)

be the total number of observations in the whole study area. The likelihood ratio test
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statistic is expressed as

λ =
maxZ,Ha

L(Z, p1, . . . , pK , q1, . . . , qK)

maxZ,H0
L(Z, p1, . . . , pK , q1, . . . , qK)

=
maxZ L(Z)

L0

with

L0 =
∏

k

∏

i

p̂o
cik

k =
∏

k

(

Ck

C

)

P

i
cik

=
∏

k

(

Ck

C

)Ck

where p̂ok = Ck/C(= q̂ok) is the maximum likelihood estimator (MLE) of pk(= qk) under

the null hypothesis, and with

L(Z) =
∏

k

(

∏

i∈Z

p̂cik

k

∏

i/∈Z

q̂cik

k

)

where p̂k and q̂k are the MLEs of pk and qk respectively under the alternative hypothesis,

which are simply the proportion of the number of observations in category k to the total

number of observations inside the scanning window and outside respectively. That is,

p̂k =
∑

i∈Z cik/
∑

k

∑

i∈Z cik
let
= Ck(Z)/C(Z) and q̂k =

∑

i/∈Z cik/
∑

k

∑

i/∈Z cik = (Ck −

Ck(Z))/(C −C(Z)). Note that L0 is constant over all scanning windows since it depends

only on the total number of observations in each category (C1, . . . , CK). For a given

window Z we calculate the log-likelihood ratio test statistic as

log λZ =
∑

k

{

Ck(Z) log

(

Ck(Z)

C(Z)

)

+ (Ck − Ck(Z)) log

(

Ck − Ck(Z)

C − C(Z)

)}

−
∑

k

Ck log

(

Ck

C

)

and the window associated with the maximum of log λZ is the most likely cluster.

To evaluate the statistical significance of the most likely cluster, we use Monte Carlo

hypothesis testing (Dwass, 1957) since the distribution of the spatial scan statistic cannot
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be obtained in a closed analytical form. Under the null hypothesis, a large number of

random data sets are generated and the test statistic is calculated for each random data

set. The Monte Carlo based p-value is then determined as the rank of the test statistic

among all data sets divided by the number of all data sets (one added to the number

of simulated data sets). When generating random data sets under the null hypothesis,

we condition on the total number of observations in each category. First, the locations

of C1 observations are randomly selected over all possible locations and the selected C1

observations are assigned to category 1. Next, C2 of remaining observations are randomly

selected and assigned to category 2. We keep doing the procedure until CK−1 observations

are selected and assigned to category K − 1 and then, the remaining CK observations are

assigned to category K.

Besides the most likely cluster, it may be interesting to inspect secondary clusters

with high values of likelihood ratio. The statistical significance of secondary clusters are

also evaluated in the same way as the most likely cluster. That is, the likelihood ratio of

secondary clusters are compared with those of the most likely clusters from the random

data sets. In this way, secondary clusters are evaluated on its own strength regardless of

the other clusters. Secondary clusters are reported when there is no geographical overlap

with other reported clusters with higher values of likelihood ratio.
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3.2 Comparison with Bernoulli and Ordinal Models

If there are only two categories (K = 2), we get the existing Bernoulli-based scan statistic

as a special case when we are searching for clusters with either high or low rates. The

Bernoulli model could be used for multinomial data after dichotomization. However, there

would be loss of information and it may not be clear how to dichotomize or be necessary

to consider all possible dichotomization. The result interpretation from several different

models would also not be very clear.

The null hypothesis for the ordinal model is the same as that for the multinomial

model, while the alternative hypothesis for ordinal model is written as Ha : p1/q1 ≤

· · · ≤ pK/qK (or Ha : p1/q1 ≥ · · · ≥ pK/qK) to ensure that detected clusters represent

areas with high (or low) rates of more serious status of outcome than the remaining areas.

The random data set generation procedure for Monte Carlo hypothesis testing for the

ordinal model and the multinomial model is basically the same.

Using the multinomial model, we search for clusters without considering “high” or

“low” rates. The detected clusters are areas where the distribution of categories is statis-

tically different from the rest of the map. We may instead list the categories in the order

of dominance in terms of the relative risk of each category inside the cluster compared to

outside.
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3.3 Cluster Detection Analysis of Meningitis Data using the

Multinomial Model

Using the proposed method of spatial scan statistic for multinomial data, we searched

for spatial clusters where the meningitis type distribution is statistically significantly

different from the remaining regions in the two counties. Three clusters were detected

and the detailed information on the clusters is presented in Table 3. Figure 2 displays the

location and the size of the clusters on the map. Cluster 1 is the most likely cluster and

the others are secondary in order of statistical significance. The most likely cluster is a

region where disease category 5 (ST-53 Complex) is the most dominant in terms of relative

risk. The risk of being a case of category 5 is 3 times higher inside the cluster compared

to outside. In cluster 2, disease category 1 (ST-213 Complex) is the most dominant and

and the risk of being category 1 is almost 5 times higher than outside the cluster. While

in clusters 1 and 2 a certain category is quite prevailing than the other categories, the

relative risk of being each disease type in cluster 3 is not that severely different. Given the

overall proportion of each meningitis type (Table 1), the relative risk of 3 for category 5

in cluster 1 and that of 5 for category 3 in cluster 2 are quite extreme.

[Table 3 and Figure 2 about here.]

Compared with the results from the analysis using the Bernoulli model in Section 2,

cluster 2 is exactly the same as cluster A and cluster 1 is inside of cluster B. However,

cluster 3 was not detected using the Bernoulli model with any dichotomization. As seen
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in Table 3, there are no cases of category 3 or 5 in cluster 3 and the relative risk for

categories 2 and 4 is less than 2 without an extreme relative risk of a certain category. Such

clusters could not be detected using the Bernoulli model with dichotomized categories.

4 Power, Sensitivity and Positive Predicted Value

We conducted a simulation study to evaluate the performance of the proposed method

in terms of statistical power, sensitivity and positive predicted value (PPV). We used

the meningitis data for geographical location (postcode). Removing one case each from

seven randomly chosen postcodes among those having more than one case, we used 500

cases in total to make data generation easy in simulations. True clusters centered at

the centroid of cluster 1 (Figure 1) were created under various scenarios with a radius

of 5467 m and 5009 m respectively. There are 80 cases included in the larger cluster

and 60 cases in the smaller one. We considered H0 : p = q = (.25, .25, .25, .25) as

the null hypothesis assuming 4 categories. To compare the proposed multinomial model

with the ordinal and the Bernoulli models, several different alternative hypotheses were

tested: A: p = (.05, .25, .35, .45), B: p = (.05, .25, .25, .45), C: p = (.10, .10, .40, .40)

and D: p = (.15, .15, .15, .55). Note that these alternatives reflect an ordinal structure

in the clusters and it is expected that the ordinal model outperforms the multinomial

model in these situations. To see if the multinomial model outperforms the ordinal model

in other situations, the ordinal model was also evaluated under unordered alternatives:
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A′ : p = (.45, .05, .35, .25), B′ : p = (.45, .05, .25, .25), C′ : p = (.40, .10, .40, .10) and D′ :

p = (.15, .55, .15, .15). Four different Bernoulli models were applied after the categories

were dichotomized: category 1 vs. the others, category 2 vs. the others, category 3 vs.

the others and category 4 vs. the others. Since the multinomial model and the Bernoulli

models with four dichotomizations do not depend on the ordering structure, they are to

perform the same for each pair of alternatives (A and A′, ..., D and D′) and were not

evaluated additionally under the unordered alternatives.

Under the null hypothesis, 125 cases out of 500 were randomly selected first and

assigned to category 1, 125 cases out of the remaining 375 were randomly selected and

assigned to category 2, 125 cases out of the remaining 250 were randomly selected and

assigned to category 3 and the remaining 125 cases were assigned to category 4. Under

the alternative, the same procedure was done for each alternative inside the cluster and

outside separately. For Ha : p = (.05, .15, .35, .45) with the larger cluster, for example,

4 randomly selected cases were assigned to category 1, 12 randomly selected cases were

assigned to category 2, 28 cases to category 3, and 36 cases to category 4 inside the cluster,

and 105 randomly selected cases each were assigned to one of four categories outside the

cluster. For unordered alternatives A′, ..., D′, we shuffled the order of categories in the

data sets generated under alternatives A, ..., D instead of generating new data sets.

We first generated 10,000 random data sets under the null hypothesis to obtain the

critical values at the significance level (α) of 0.05 and 0.01 for each model. Then, 1,000

random data sets were generated under each alternative hypothesis to estimate power,
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sensitivity, and positive predicted value. Power was estimated as the proportion of the

number of rejected data sets out of 1,000 at α = 0.05 and α = 0.01 and the results are

presented in Table 4. Sensitivity and PPV for spatial scan statistics were introduced

by Huang et al. (2007) and also used by Jung et al. (2007) to evaluate the geographical

precision of the detected cluster. Sensitivity was defined as the proportion of the number of

cases correctly detected among the cases in the true cluster and PPV as the proportion of

the number of cases belonging to the true cluster among the cases in the detected cluster.

Sensitivity and PPV were computed only for the data sets rejected at the significance

level of 0.05 and the averages of them are presented in Table 5.

[Tables 4 and 5 about here.]

As expected, the ordinal model performs better than the multinomial model for or-

dered alternative hypotheses. The ordinal model has higher power, sensitivity and PPV

than the multinomial model in every situation of ordered alternatives. The multinomial

model attains relatively high power with the larger cluster although the power with the

smaller cluster under alternatives B, C and D is not very high. Still, the multinomial

model seems to detect the correct cluster fairly well. The sensitivity and PPV for the

multinomial model and the ordinal model are very comparable. For unordered alterna-

tives, on the contrary, the ordinal model performs very poorly. Power is less than 40% and

sensitivity and PPV are also very low compared to the multinomial model. The Bernoulli

models performs well with certain dichotomization in extreme conditions. The situations

in which the Bernoulli model attains highest power are alternatives A and B for category 1
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and alternative D for category 4. In such cases, the Bernoulli model performs better than

the multinomial and ordinal models. However, the performance of the Bernoulli model

in the other situations is not very good. For alternative C, none of four Bernoulli models

perform well.

5 Discussion

We have proposed a spatial scan statistic for multinomial data, which is very useful for

geographical cluster detection analysis for categorical data without any intrinsic order

information. The detected clusters are the areas where the distribution of the category

is statistically significantly different from the remaining region in a study area. The

Bernoulli-based scan statistic may be used for such data with dichotomized categories,

but we have to consider different models as many as the number of categories if we

dichotomize the categories into one category versus the others. As seen in the meningitis

data example, different clusters were detected from different models and not all the clusters

detected using the multinomial-based scan statistic were identified using the Bernoulli-

based scan statistic.

The simulation study suggests that the multinomial model has good power for dif-

ferent types of divergence from the null hypothesis and detects clusters fairly precisely,

although the ordinal model attains higher power, sensitivity and PPV when there is in-

trinsic ordinal structure in the data. However, without such an ordinal structure, the
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multinomial model performs much better than the ordinal model. Although the Bernoulli

model with dichotomized categories performs very well in some situations, problems of

using the Bernoulli model for multinomial data are that there would be loss of information

in dichotomization and that it may not be clear how to dichotomize. Also, without an

extreme probability of certain category, the Bernoulli model may not perform very well

with any dichotomization.

The meningitis data have a variable called MOSAIC representing the deprivation level

of each postcode area and it would be interesting to see if the cluster detection analysis

results will be affected by the variable. Currently, covariate adjustment in spatial scan

statistic for multinomial model is rather limited. For categorical covariates, it may be

possible to use multiple data sets stratified by the categorical covariate level as proposed

by Kulldorff et al. (2007). As a more flexible option, a generalized linear models approach

can be used as introduced by Jung (2009).

The proposed method can be used in many other applications in addition to disease

surveillance. For example, one may want to search for areas with a different plant dis-

tribution when there are multiple types of trees or plants in a region. Other examples

may be found in politics or criminology: when people vote for multiple political parties

in an election, areas with the most distinct voting pattern are of interest. For multiple

types of crimes (burglary, homicide, vandalism, assault, etc.), one may want to search for

areas with distinct crime patterns. In some application the primary interest may not be

whether there are statistically significant clusters, but which area is the most different
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from the rest of the region.

Even though we have ordinal data, we do not necessarily have to consider the ordinal

structure all the time when searching for clusters. For example, one may be simply

interested in finding if the distribution of cancer stage in a certain area is statistically

significantly different from the remaining areas instead of finding clusters with high rates

of more serious stage when a higher stage indicates more serious status of disease. Then,

we may identify which stage is the most prevailing or the least in terms of the relative risk

of each stage in the detected clusters compared to outside the clusters. It can be revealed

that the detected clusters are in fact areas with high rates of more serious stage than the

surrounding areas. The multinomial model will be of more general use than the ordinal

model in the sense that the multinomial model can be used for categorical data with or

without ordinal structure while the ordinal model can be used only for ordinal data.

The proposed method has been presented for purely spatial analysis in this paper but

it can also be used for space-time data using a cylindrical scanning window with the base

representing space and the height representing time. Computation of the test statistic,

Monte Carlo hypothesis testing procedure, and other algorithms will remain the same.

The space-time scan statistic may be used for a single retrospective analysis (Kulldorff

et al., 1988) or for a prospective surveillance with repeated analyses (Kulldorff, 2001).

The spatial scan statistic for multinomial data has been implemented into the freely

available software SaTScan which can be downloaded from www.satscan.org. (Note: To

be released around January 2009.)
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Figure 1: Spatial cluster detection analysis results for meningitis data in Nottingham
and Derbyshire counties, UK, using the Bernoulli model with dichotomized categories.
(See Table 2)
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Figure 2: Spatial cluster detection analysis results for meningitis data in Nottingham
and Derbyshire counties, UK, using the multinomial model. (See Table 3)
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Category Meningitis type n %

1 ST-213 Complex 78 15.4

2 ST-22 Complex 119 23.5

3 ST-23 Complex/Cluster A3 50 9.8

4 ST-41/44 Complex/Lineage 3 179 35.3

5 ST-53 Complex 81 16.0

Total 507 100.0

Table 1: The number of meningitis cases in Nottingham and Derbyshire counties, UK

(1999-2001), by type of disease
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Radius (m) #Obs RR LLR p-value

Category 1 vs. the others (Cluster A) 1745 18 4.94 12.70 0.003

Category 2 vs. the others 2866 5 1.17 7.33 0.332

Category 3 vs. the others 11908 71 0.00 7.98 0.114

Category 4 vs. the others 3108 15 0.00 6.66 0.481

Category 5 vs. the others (Cluster B) 7124 139 3.00 14.49 0.001

Table 2: Cluster detection analysis results for meningitis data in Nottingham and Der-

byshire counties, UK, using the Bernoulli model with dichotomized categories. (See Fig-

ure 1) #Obs is number of total observations. RR is relative risk, computed as the ratio

of the proportions of the number of cases out of total number of cases inside the cluster

versus outside. LLR is log-likelihood ratio.
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Radius (m) #Obs RR in each category LLR p-value

Cluster 1 4948 56 (0.21, 0.82, 0.00, 1.07, 3.00) 18.10 0.001

Cluster 2 1745 18 (4.94, 0.23, 0.55, 0.62, 0.00) 14.44 0.033

Cluster 3 9546 37 (0.51, 1.83, 0.00, 1.51, 0.00) 14.10 0.041

Table 3: Cluster detection analysis results for meningitis data in Nottingham and Der-

byshire counties, UK, using the multinomial model. (See Figure 2) #Obs is number of

total observations. RR is relative risk, computed as the ratio of the proportions of the

number of cases in each category out of total number of cases inside the cluster versus

outside. LLR is log-likelihood ratio.
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α = .05 α = .01

Ha Multi Ord Ord* Br1 Br2 Br3 Br4 Multi Ord Ord* Br1 Br2 Br3 Br4

80 cases in cluster

A: p = (.05, .15, .35, .45) 1.000 1.000 0.383 1.000 0.073 0.070 0.450 1.000 1.000 0.111 0.764 0.016 0.017 0.151

B: p = (.05, .25, .25, .45) 0.958 1.000 0.299 1.000 0.048 0.052 0.449 0.646 1.000 0.074 0.769 0.012 0.009 0.157

C: p = (.10, .10, .40, .40) 1.000 1.000 0.395 0.263 0.236 0.144 0.132 0.745 1.000 0.113 0.096 0.067 0.040 0.041

D: p = (.15, .15, .15, .55) 1.000 1.000 0.300 0.070 0.081 0.073 1.000 0.811 1.000 0.078 0.013 0.024 0.016 1.000

60 cases in cluster

A: p = (.05, .15, .35, .45) 0.901 1.000 0.245 0.723 0.060 0.048 0.217 0.513 0.938 0.070 0.322 0.015 0.012 0.066

B: p = (.05, .25, .25, .45) 0.492 0.931 0.175 0.720 0.038 0.049 0.223 0.221 0.492 0.042 0.335 0.008 0.008 0.062

C: p = (.10, .10, .40, .40) 0.596 0.965 0.224 0.148 0.140 0.099 0.084 0.250 0.568 0.041 0.032 0.034 0.020 0.022

D: p = (.15, .15, .15, .55) 0.693 1.000 0.181 0.060 0.068 0.070 1.000 0.329 0.663 0.040 0.011 0.017 0.014 0.902

Table 4: Estimated power of the multinomial, ordinal and Bernoulli models at the significance level of .05 and .01. Multi=multinomial

model, Ord=ordinal model, Ord*=ordinal model tested under unordered alternatives A′ : p = (.45, .05, .35, .25), B′ : p = (.45, .05, .25, .25),

C′ : p = (.40, .10, .40, .10), D′ : p = (.15, .55, .15, .15), Br1=Bernoulli model for category 1 (vs. the others), Br2=Bernoulli model for

category 2 (vs. the others), Br3=Bernoulli model for category 3 (vs. the others), Br4=Bernoulli model for category 4 (vs. the others)
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Sensitivity PPV

Ha Multi Ord Ord* Br1 Br2 Br3 Br4 Multi Ord Ord* Br1 Br2 Br3 Br4

80 cases in cluster

A: p = (.05, .15, .35, .45) 0.891 0.893 0.573 0.871 0.245 0.270 0.608 0.705 0.708 0.507 0.666 0.174 0.260 0.569

B: p = (.05, .25, .25, .45) 0.857 0.876 0.526 0.870 0.058 0.052 0.637 0.673 0.690 0.482 0.663 0.062 0.094 0.556

C: p = (.10, .10, .40, .40) 0.852 0.870 0.541 0.631 0.573 0.426 0.372 0.673 0.685 0.464 0.454 0.409 0.402 0.394

D: p = (.15, .15, .15, .55) 0.847 0.868 0.493 0.312 0.298 0.310 0.882 0.705 0.716 0.408 0.234 0.192 0.182 0.723

60 cases in cluster

A: p = (.05, .15, .35, .45) 0.781 0.801 0.389 0.787 0.220 0.189 0.465 0.822 0.846 0.485 0.736 0.155 0.210 0.580

B: p = (.05, .25, .25, .45) 0.731 0.770 0.371 0.782 0.075 0.094 0.478 0.696 0.751 0.389 0.722 0.064 0.086 0.560

C: p = (.10, .10, .40, .40) 0.712 0.770 0.461 0.504 0.475 0.293 0.275 0.746 0.811 0.443 0.388 0.340 0.409 0.345

D: p = (.15, .15, .15, .55) 0.683 0.752 0.377 0.231 0.187 0.236 0.781 0.768 0.838 0.386 0.180 0.138 0.188 0.864

Table 5: Estimated sensitivity and positive predicted value of the multinomial, ordinal and Bernoulli models. Multi=multinomial model,

Ord=ordinal model, Ord*=ordinal model tested under unordered alternatives A′ : p = (.45, .05, .35, .25), B′ : p = (.45, .05, .25, .25),

C′ : p = (.40, .10, .40, .10), D′ : p = (.15, .55, .15, .15), Br1=Bernoulli model for category 1 (vs. the others), Br2=Bernoulli model for

category 2 (vs. the others), Br3=Bernoulli model for category 3 (vs. the others), Br4=Bernoulli model for category 4 (vs. the others)
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