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Abstract 

 
Background 

 

The spatial scan statistic is commonly applied for the detection and evaluation of geographical 

disease clusters. Monte Carlo hypothesis testing is typically used to test whether the geographical 

clusters are statistically significant as there is no known way to calculate the null distribution 

analytically.  In Monte Carlo hypothesis testing, simulated random data are generated multiple 

times under the null hypothesis, and the p-value is r/(R+1), where R is the number of simulated 

random replicates of the data and r is the rank of the test statistic from the real data compared to 

the same test statistics calculated from each of the random data sets.  A drawback to this 

powerful technique is that to obtain each additional digit of p-value precision, ten times as many 

simulated replicates are required, which can lead to excessive computing requirements when the 

data set is large. 

 

Results 

 

We propose a new method for obtaining more precise p-values with a given number of 

replicates.  The collection of test statistics from the random replicate is used to estimate the true 

distribution of the test statistic under the null hypothesis, by fitting a continuous distribution to 

these observations.  The choice of distribution is critical, and for the spatial scan statistic, the 

extreme value Gumbel distribution performs very well while the gamma, normal and lognormal 

distributions perform poorly.  From the fitted Gumbel distribution, we show that it is possible to 

estimate the analytical p-value with great precision even when the test statistic is far out in the 

tail beyond any of the test statistics observed in the simulated replicates.  In addition, Gumbel-

based rejection probabilities have smaller variability than Monte Carlo-based rejection 

probabilities, suggesting that the proposed approach may result in greater power than the true 

Monte Carlo hypothesis test for a given number of replicates. 

 

Conclusions 

 

For large data sets, it is often advantageous to replace computer intensive Monte Carlo 

hypothesis testing with this new method of fitting a Gumbel distribution to random data sets 

generated under the null, in order to obtain much more precise p-values and slightly higher 

statistical power.  

 

Background 
 

Introduction 

 

Geographic cluster detection and evaluation is important in disease surveillance.  One 

frequently-used method for cluster detection is the spatial scan statistic [1-3].  This method has 

been used to study the geography of infectious diseases such as malaria [4], vector borne 

diseases such as West Nile Virus [5], many different forms of cancer [6-10], low birth weight 

[11], syndromic surveillance [12-16], and bovine spongiform encephalopathy [17], among many 

other diseases. 
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The spatial scan statistic is found by moving a scanning window across the geographical region 

of interest, generating a large collection of window locations and sizes that meet pre-defined 

criteria.  For each location and size, the likelihood ratio is calculated, and the spatial scan statistic 

is the maximum of these likelihood ratios.  The window location and size with the maximum 

likelihood ratio is the most likely cluster; that is, the cluster that is least likely to have occurred 

by chance [1, 2].  Except for the simplest scenarios, there is no known closed-form theoretical 

distribution for the spatial scan statistic.  Therefore, a p-value for the spatial scan statistic is 

usually obtained using Monte Carlo hypothesis testing [18]. 

 

In Monte Carlo hypothesis testing, a large number of random replicates of the observed data are 

generated under the null hypothesis. Monte Carlo p-values are asymptotically equivalent to p-

values from exact permutation tests as the number of random replicates increases, but the key 

property is that it has been shown that Monte Carlo hypothesis testing p-values maintain the 

correct alpha level, exactly, as long as the number of replicates plus one is a multiple of 1/α [18].  

Monte Carlo hypothesis testing can therefore be useful when theoretical distributions are 

unknown and the number of permutations prohibits a full enumeration.  One major drawback to 

the approach is that small p-values can only be obtained through a very large number of Monte 

Carlo replicates, which may be computer intensive and time consuming.  For the spatial scan 

statistic, Monte Carlo hypothesis testing requires the calculation of the likelihood ratio for each 

location and size of the scanning window, for each replicated data set.  Thus, the approach can be 

computer intensive for very large data sets. 

 

In disease surveillance, the spatial scan statistic is sometimes calculated on a daily basis, to 

continuously monitor a disease in near real-time [12, 19].  These clusters may then be reported to 

local, state, or federal public health officials for potential investigation.  Using a conventional 

0.05 α-level would on average result in one false rejection of the null hypothesis every 20 days.  

Because of limited resources, health officials are not able to investigate a lot of false alarms [12, 

19].  To control the number of false rejections at a more tenable level, one might instead use an 

α-level of 1/365 or 1/3650, corresponding to one expected false positive every year or every ten 

years, respectively, for daily analyses.  If multiple diseases are under surveillance, the desired α-

level may be even smaller to adjust for the multiple testing inherent in the multiple diseases 

being evaluated.  If Monte Carlo hypothesis testing is used, such α-levels may require hundreds 

of thousands of random replicates to be simulated each day.  Due to the large number of 

computations associated with each replicate, the computational burden associated with small p-

values can be large. 

 

In this article, we propose a way to generate approximate p-values for the spatial scan statistic 

with fewer calculations.  The approach we take is to find a distribution which closely 

approximates the distribution of the test statistics that were generated under the null hypothesis, 

which themselves reflect the distribution of the spatial scan statistic under the null.  To do this 

we generate a relatively small number of random simulated replicates under the null hypothesis.  

We then use them to estimate parameters for a distribution with a well-characterized functional 

form.  If this distribution fits the sample distribution well, we can use it as an estimate of the 

distribution of the spatial scan statistic under the null and use it to generate arbitrarily small p-
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values.  Because we are interested in small p-values, it is particularly important that the estimate 

is good in the tail of the distribution. 

 

We note that although this paper is focused on the spatial scan statistic, the general methodology 

that we propose in this article can easily be applied to other test statistics that rely on Monte 

Carlo hypothesis testing. 

 
Spatial scan statistics 

 

The spatial scan statistic is used to determine whether there is any clustering of events on a map.  

Events may, for example, be cases of disease incidence, prevalence or mortality. We look at all 

unique subsets of events that lie within a collection of scanning windows to detect clusters.  

Although any shape scanning window may be used, we use circles throughout this paper. 

 

Suppose that there are p geographical coordinates marked on a map, each representing a region, 

and consider all circles, ,i rC , where 1, ,i p= K  indicates the coordinates around which the circle 

is centered, and r indicates its radius, which ranges from 0 to some pre-specified maximum. 

Based on the observed and expected number of events in the circle, calculate the likelihood ratio 

for each distinct circle [1, 2].  The circle with the maximum likelihood ratio is the most likely 

cluster, that is, the cluster that is least likely to have occurred by chance.  For computational 

simplicity, the logarithm of the likelihood ratio is typically used instead of the ratio itself, and the 

log likelihood ratio of this circle is defined as the scan statistic. 

 

For this study, we used the SaTScan
TM

 [20] statistical software program, which calculates the 

scan statistic and implements Monte Carlo hypothesis testing to calculate a p-value.  SaTScan
TM

 

allows the user to vary many parameters including the maximum cluster size, the probability 

model, and the number of Monte Carlo replicates. 

 

Monte Carlo hypothesis testing 

 

Proposed by Dwass [18], Monte Carlo hypothesis testing is useful for determining how unusual 

an observed statistic is when the underlying distribution for the test statistic is unknown but 

when it is possible to generate data under the null hypothesis.  To do this, one first calculates the 

test statistic from the real data.  Then, a large number of random data sets are generated 

according to the null hypothesis, and the test statistic is calculated for each of these data sets.  If 

one creates R random replicates of the data and r-1 of those replicates have a test statistic which 

is greater than or equal to the test statistic from the real data, so that r is the rank of the test 

statistics from the real data, then the p-value of the observed test statistic is 
1

r

R+
. 

 

If the test statistic from the real data set is among the highest 5 percent from the random data 

sets, then we can reject the null hypothesis at the α=0.05 level of statistical significance.  A nice 

feature of Monte Carlo hypothesis testing is that the correct 0.05 α-level is maintained exactly 

even when there are only, for example, 19, 99 or 999 random replicates, although fewer 

replicates means lower statistical power [21]. 
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In many applications, it matters little whether a p-value is 0.01 or a lot less, as they all reject the 

null hypothesis, and 99 Monte Carlo replicates is then sufficient .  However, in the context of 

hourly, daily or weekly analyses in real-time disease surveillance, the goal is to detect clusters of 

disease that are very unusual, and only the most unusual clusters will be investigated.  P-values 

on the order of 0.0001 or even smaller may be required before an investigation is launched.  

These p-values can only be calculated with 9999 or more Monte Carlo replicates.  The number of 

Monte Carlo replicates required is determined only by the desired precision of the p-value, and 

each additional decimal place requires 10 times the number of Monte Carlo replicates and hence 

about 10 times the computing time. 

 

The Gumbel distribution 

 

The spatial scan statistic described above is the maximum value taken over many circle locations 

and sizes, so the collection of these statistics generated from the Monte Carlo replicates is a 

distribution of maximum values.  Since our technique involves finding a distribution which 

closely matches the distribution of the replicated statistics, it is natural to consider one of the 

extreme value distributions as one possible candidate to approximate the desired distribution.  

The Gumbel distribution is a distribution of extreme values, either maxima or minima.  Here, we 

limit ourselves to distributions of maxima since the scan statistic is a maximum.  The cdf for the 

Gumbel distribution of maxima is ( )

x
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a scale parameter and β  is a shape parameter.  Both µ  and β  can be estimated from a sample 

of observations using method of moments estimators as follows: 
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ˆˆ 0.5772Xµ β= −  

 where X  is the sample mean and s  is the sample standard deviation [22, 23]. 

 

Methods 
 

To evaluate whether it is possible to obtain approximate small p-values with only a limited 

number of Monte Carlo replicates, we performed computer simulations fitting different 

probability distributions to the sample test statistics from the random data sets generated under 

the null.  For our baseline set-up, we use a map of 245 counties and county equivalents in the 

Northeast United States, with each county represented by its census-defined centroid [20].  

Under the null hypothesis, the number of cases in each county is Poisson distributed.  

Conditioning on a total of 600 cases, the cases were randomly and independently assigned to a 

county with probability proportional to the 1994 female population in that county [24]. The 

maximum circle size of the scan statistic was set to 50% of the population. 

 

First, we generated 100,000,000 Monte Carlo replicates of the data under the null hypothesis.  

The maximum log likelihood ratio among all distinct circles is the statistic reported from each 

replicate.  These 100,000,000 statistics generated our “gold standard” distribution of log 

likelihood ratios, which we treat as if it were the actual distribution of the statistic under the null.  

Using this distribution, we find the ‘true’ log likelihood ratio corresponding to a given α-level by 
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finding the log-likelihood ratio for which the rank divided by 100,000,000 gives the desired α-

level.  For example, the log likelihood ratio with a rank of 1,000,000 corresponds to an α-level of 

0.01, since 1,000,000/100,000,000=0.01. 

 

Using the same parameter settings, we also generated 999 Monte Carlo replicates of the data.  

We used the 999 maximum log-likelihood ratios obtained from the Monte Carlo replicates to fit 

normal, gamma, lognormal and Gumbel distributions to the data to see if any of them would 

approximate the true distribution of these log-likelihood ratios.  To fit the normal, gamma, and 

lognormal distributions we used maximum likelihood estimates, and we used the method of 

moments estimators for the Gumbel distribution.  

 

The idea now is to use the fitted empirical distribution function to obtain a p-value.  The p-value 

is calculated by finding the area under this distribution that is to the right of the observed test 

statistic.  For this to work, it is important that the right tail of this function is similar to the right 

tail of the true distribution that is represented by the gold standard distribution from the 

100,000,000 replicates.  In order to check this, we used the cumulative distribution function (cdf) 

of each fitted empirical distribution function to find the critical value of the log likelihood ratio 

corresponding to the nominal α-level.  We then ranked each critical value among the 

100,000,000 log likelihood ratios in the gold standard distribution to find the true probability of 

rejecting the null at that critical value.  We call this the rejection probability, and for the test to 

be unbiased, the expected value of this rejection probability must be equal to the nominal 

(desired) α-level.  For each type of distribution, we did this 1000 times which resulted in 1000 

critical values and, therefore, 1000 rejection probabilities.  The average of these rejection 

probabilities is an estimate of the true (actual) α-level, which is then compared with the nominal 

α-level . 

 

Here we present a formal description of this process; a schematic diagram is shown in Figure 1.  

Let ( )d xφ  be the probability density function (pdf) of the distribution, d, obtained by using the 

log likelihood ratios generated from the Monte Carlo replicates to estimate the parameters for d.  

Here we use d =  normal, lognormal, gamma, and Gumbel.  Let ( )d xΦ  be the associated cdf.  

For the nominal α-level, nα , and each distribution, we first find the critical value , nd αω  for which 

( ) ( )
,

,1
n
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α

α

ω
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∞

− Φ = =∫ ; that is, we find ( )1

, 1
nd d nαω α−= Φ − .  Note that , nd αω  is the 

value for which the area under ( )d xφ  and to the right of , nd αω  is nα .  Now, let ( )xγ  be the true 

pdf of the log-likelihood ratios and let ( )xΓ  be the corresponding cdf.  Then 
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− Γ = =∫  is the rejection probability from distribution d and associated 

with nα .  Of course, ( )xΓ  is unknown, and here we use the observed 100,000,000 replicates as 

a proxy.  Effectively, ( ) ( )
100,000,000

, , ,
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1
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th

 

log-likelihood ratio in the gold-standard distribution.  The average of  the 1000 , ndr α ’s is our 
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estimate of the true α-level, when the nominal α-level is nα .  Note that the α-level found using 

Monte Carlo hypothesis testing, which we denote , nMC αα is proven theoretically to be correct, so 

that , nMC nαα α≡ . 

 

In addition to the baseline set-up, we repeated the same experiment with different numbers of 

cases, different maps, different probability models generating the data, different maximum circle 

sizes, and different numbers of Monte Carlo replicates.  The combinations that we used are 

summarized in Table 1.  United States 3-digit zip code populations were obtained from the 1990 

United States Census [25].  For each set of parameters in Table 1, we performed the experiment 

using 99, 999, and 9999 Monte Carlo replicates to generate the empirical/asymptotic distribution.  

We chose 5 nominal α-levels ( nα = 0.05, 0.01, 0.001, 0.0001, 0.00001).  All calculations were 

done using the SaTScan
TM

 software. 

 

Results 
 

α-levels 

 

The most important evaluation criteria is to ensure that the α-levels (type I error) are correct.  For 

the baseline experimental set-up, the histograms in Figure 2 show 1000 rejection probabilities for 

each empirically fitted distribution.  The mean of these rejection probabilities is an estimate of 

the true α-level achieved through this process.  Note that in order to maintain the correct α-level, 

it is enough for the mean of the distribution to equal α, while the variance around α is irrelevant.  

Therefore, to maintain the correct α-level, it is sufficient that the rejection probabilities are 

centered around the desired α-level.  Among the distributions assessed here, the rejection 

probabilities from the Gumbel approximation are centered around the nominal α-levels; for the 

other distributions the rejection probabilities are centered to the right of the nominal α-level.  

Thus, using any distribution other than the Gumbel distribution to approximate the underlying 

distribution of the spatial scan statistic results in anti-conservatively biased α-levels, or in other 

words, p-vales that are too small.  This can also be seen in Figure 3, where we show a plot of the 

ratio of the estimation of the true α-level to the nominal α-level for each distribution.  Figure 3 

shows that the Gumbel approximation has very little bias. When 999 or 9999 Monte Carlo 

replicates were used the slight bias is conservative, whereas the bias from all other distributions 

is large and anti-conservative. 

 

The above results are all based on the baseline experimental setting.  For the other settings, the 

true α-levels are presented in Table 2 for the Gumbel distribution, showing the robustness of this 

method.  Overall, the Gumbel approximation works quite well.  The α-levels are slightly 

conservative whenever 999 or 9999 Monte Carlo replicates were used, and slightly anti-

conservative with 99 replicates.  The bias becomes increasingly conservative with an increasing 

number of replicates.  The worst results using the Gumbel distribution were for the very extreme 

scenarios when there are only 6 disease cases in all of the northeastern United States, when there 

is a non-negligible conservative bias, and when the maximum scanning window size was limited 

to contain at most 1 county, when there is a non-negligible anti-conservative bias. We also 

evaluated the other three distributions using all of the settings, and the bias was similar to, and as 

bad as the results shown in Figures 2 and 3 (data not shown). 
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Statistical power 

 

Statistical power is another important evaluation criterion.  While the variance in the 

probabilities depicted in Figure 2 do not influence the α-level, a larger variance will slightly 

reduce the statistical power of the test [21].  We informally compared the power for the Gumbel 

approximation to the power obtained from Monte Carlo hypothesis testing by looking at the 

variance of the rejection probabilities used to calculate a range of α-levels.  Using the parameter 

set from the baseline experimental settings, Figure 4 shows histograms of the rejection 

probabilities from the Gumbel approximation and from Monte Carlo hypothesis testing using 

different numbers of Monte Carlo replicates.  The figure suggests that the variance in the 

rejection probabilities from the Gumbel approximation is smaller than the variance in the 

rejection probabilities from Monte Carlo hypothesis testing.  Numerically, the ratio of the 

standard deviation of the rejection probabilities from the Gumbel approximation to the standard 

deviation of the rejection probabilities from Monte Carlo hypothesis testing is less than 1 when 

the same number of replicates are used for both methods, indicating that the scan statistic has 

greater power when the Gumbel approximation is used than with the traditional Monte Carlo 

hypothesis testing.  When we use 9999 replicates for Monte Carlo hypothesis testing and only 

999 replicates for the Gumbel approximation the ratio of the standard deviation of the rejection 

probabilities from the Gumbel approximation to the standard deviation of the rejection 

probabilities from Monte Carlo hypothesis testing is about 1; the same is true if 999 replicates 

are used for Monte Carlo hypothesis testing and 99 replicates are used for the Gumbel 

approximation.  This means that in this example, 10 times as many replicates are required in 

order to get about the same power with Monte Carlo hypothesis testing as with the Gumbel 

approximation. 

 

Discussion 
 

We have shown that the Gumbel distribution can be used to obtain approximate p-values for the 

spatial scan statistic with great accuracy in the far tail of the distribution.  This can be done using 

far less computation than required by the traditional method based on Monte Carlo hypothesis 

testing. A key question is then when to use Monte Carlo hypothesis testing versus Gumbel based 

p-values. 

 

If the primary interest is in 0.05 and 0.01 alpha levels, or if the data set is small so that it is easy 

to generate and calculate the test statistic for hundreds of thousands of simulated replicas, then 

traditional Monte Carlo hypothesis testing works well, and the benefit of Gumbel based p-values 

is at most marginal. There are several instances in which the Gumbel approximations offer a 

clear advantage though. 

 

If the same number of replicates is used, then the Gumbel approximation has higher power than 

Monte Carlo hypothesis testing.  When the number of replicates divided by the desired alpha 

level is large, the difference in power is marginal, but when it is small, there is a clear advantage 

of the Gumbel approximation.  More specifically, the Gumbel approximation with one-tenth the 

number of replicates used by Monte Carlo hypothesis testing provides approximately the same 
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statistical power, while using one-tenth of the computing time.  Although there is some bias with 

the Gumbel approximation, the bias is small and, in most cases, conservative. 

 

The most important benefit of the Gumbel approximation is its ability to calculate very small p-

values with a very modest number of simulated replicates.  For example, p-values on the order of 

0.00001 can be accurately calculated with only 999 random replicates by using the Gumbel 

approximation, while it would require more than 999,999 replicates to get the same power and 

precision from Monte Carlo hypothesis testing. 

 

The attempts to calculate p-values with the help of the normal, lognormal and gamma 

distributions all resulted in anti-conservatively biased α-levels. The bias from these 

approximations was so large that we do not recommend their use to approximate p-values for 

spatial scan statistics. 

 

The circular purely spatial scan statistic for count data is only one of many types of scan 

statistics.  Other types include the space-time scan statistics [2, 26], elliptical shaped spatial scan 

statistics [27], non-parametric irregular shaped spatial scan statistics [28-30], as well as spatial 

and space-time scan statistics for ordinal [31] and exponential data [32, 33].  While we have not 

tested the Gumbel approximation for other types of scan statistics, these statistics are all maxima 

and generating p-values for any of them relies on Monte Carlo hypothesis testing.  It would be 

reasonable, then, to evaluate whether p-values for these other scan statistics could also be 

approximated with the Gumbel distribution. 

 

The method used here of fitting a distribution to the statistics obtained from the Monte Carlo 

replicates can be applied to many other applications in which Monte Carlo hypothesis testing is 

used and where very small p-values are required or where computing time is limited.  There is no 

reason to expect the Gumbel distribution to work well in all situations.  In this particular example 

it makes sense intuitively because the scan statistic generated in each replicate is a maximum 

over many circles and the Gumbel distribution is a distribution of maxima.  Other applications 

may lend themselves naturally to a different choice of distribution. 

  

To summarize, in applications in which the precision of small p-values is not important, we 

suggest using Monte Carlo hypothesis testing to obtain the p-values for the spatial scan statistic.  

In applications in which the precision of p-values is important or where each replicate takes a 

long time to complete, the Gumbel based p-values are often advantageous for reasons of both 

computational speed and statistical power. To facilitate its use, Gumbel based p-values have 

been added to version 9 of the freely available SaTScan software, which can be downloaded 

from www.satscan.org.  
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Figure legends 

 

Figure 1: Schematic for finding the rejection probability.  First find the critical value , nd αω  on 

the fitted empirical distribution, then use that value to find , ndr α , the ‘true’ probability of reject-

ing the null hypothesis given the highly accurate ‘gold standrad’ pdf obtained from the 

100,000,000 replicates under the null. 

Figure 2: Histograms of the rejection probabilities obtained from each of the fitted empirical dis-

tributions.  The vertical gray lines indicate the nominal α-level.  For α = 0.05, α = 0.01, and α = 

0.001, the scales are the same within those columns with the scale marked at the bottom of each 

column.  For α = 0.0001 and α = 0.00001, the scale is different for the normal distribution than 

for the other 3 distributions, as is indicated at the bottom of the histograms. 

Figure 3: Ratio of estimated α-levels to nominal α-levels for 4 distributions and different num-

bers of Monte Carlo replicates used to estimate the parameters for each distribution. 

Figure 4: Histograms of the rejection probabilities obtained using the Gumbel approximation 

and from Monte Carlo hypothesis testing based on 99, 999, or 9,999 Monte Carlo replicates. 
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Table 1: Combinations of settings used; bold indicates baseline settings. 

Number of cases Map Model type Maximum 

circle size 

600 NE counties Poisson 50% 

600 NE counties Bernoulli 50% 

600 NE counties Poisson 1 county 

600 US 3-digit zip codes Poisson 50% 

6 NE counties Poisson 50% 

6000 NE counties Poisson 50% 

60000 NE counties Poisson 50% 
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