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SUMMARY

We present a new method of detection and inference for spatial clusters of a disease. To avoid ad hoc
procedures to test for clustering, we have a clearly defined alternative hypothesis and our test statistic is
based on the likelihood ratio. The proposed test can detect clusters of any size, located anywhere in the study
region. It is not restricted to clusters that conform to predefined administrative or political borders. The test
can be used for spatially aggregated data as well as when exact geographic co-ordinates are known for each
individual. We illustrate the method on a data set describing the occurrence of leukaemia in Upstate New
York.

1. INTRODUCTION

The statistics of disease clustering is of interest to epidemiologists and has been studied for many ‘
decades. Such studies are useful to detect and monitor potential public health hazards. A review
of several existing methods to detect spatial clustering of disease appears in Marshall! and in Hills
and Alexander.? For more recent developments see Jacquez.?

The epidemiologist is typically interested in clusters of disease cases only after having adjusted
" for spatial variations in the density of the background population itself. Thus, on a map
representing the cases as a spatial point pattern, an apparent disease cluster in a particular area
could be misleading because it may be explained simply by a clustering of the population itself in
that area. In this paper, we present a method that detects the location of possible disease clusters
in a population with inhomogeneous spatial density, and simultaneously uses methods of
inference to test for significance. ,

Upton and Fingleton* have pointed out two major approaches used for the analysis of spatial
point patterns in general. Both have been applied to disease clustering. One approach uses a test
statistic based .on measuring distances between the disease cases while the other is based on
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studying the variability of case counts in certain subsets of the study region, often called quadrats.

“The former approach broadly defines the so-called distance methods, of which Whittemore et al. 5
is one example. Methods that rely on the latter approach are called quadrat-methods, an example
of which appears in Choynowski.®

For the practitioner who intends to use a particular method, whether distance-based

or quadrat-based, it is important to know exactly what the method can detect, partly because
the term ‘clustering’ has several different interpretations. Most of the tests proposed so far
have been tests for overall clustering. These do not have the ability to detect the loca-
- tion of ¢lusters, but are geared toward answering the questxon of whether the phenomenon of
clustermg occurs in the data. Examples appear in Moran.” Whittemore et al.,’ Cuzick and
Edwards,® and Diggle and Chetwynd.® These are useful in applications where the location of
clusters is not of interest, as for example, in an investigation of whether or not a disease is
infectious.

In other situations one is interested in the location of clusters as well as in answering questions
pertaining to their significance. We would then use what Besag and Newell'© refer to as tests for
the detection of clusters. Two primarily descriptive methods of this kind are those of Openshaw
et al.!'*12 and Besag and Newell.'? Both methods graphically identify possible clusters by using
a multitude of overlapping circles as quadrats. Openshaw et al.'' look at case counts in
overlapping cifcles of variable size and identify potential clusters among these, by conducting
a separate significance test for each circle individually. This method does not lend itself easily to
a single unified test of significance, because the clusters identified in this manner are correlated
and a Bonferroni procedure to compensate for multiple testing would be quite conservative. The
test of Besag and Newell'® uses overlapping circles to identify clusters in a slightly different way.
In addition, it is combined with a test for overall clustering and thus appears to have a more
acceptable statistical basis. Turnbull et al.'® have used overlapping circles to construct a test that

“not only detects clusters but also correctly addresses the multiple testing problem, albeit only for
circles with a pre-determined population size. The test we have developed in this paper general-
izes the test of Turnbull et al.'?

For yet another type of application we would use what Besag and Newell'® call a focused test.
One can use such tests when the study region contains some putative health hazard, such as a coal
plant, and we suspect a cluster of say lung cancer around it. Examples appear in Stone,!'4
Schulman et al.,! Diggle,'® and Waller et al.!” In the discussion in Section 5, we briefly mention
how to adapt our method to do a focused test.

In Section 2, we describe the methods of Openshaw et al.'*-!2 and Turnbull et al.,'? since they
relate closely to our method. Section 3 contains a precise statement of the null and alternative
hypotheses and a description of the proposed likelihood ratio test for our method. The test we
propose addresses several important problems. In particular:

1. We directly address the problem of inference for detected clusters.

2. We do not restrict ourselves to searching for clusters of a prespecified size.

3. The test is based on the likelihood ratio rather than an ad hoc test statistic.

4. We clearly define an alternative hypothesis so that the user of the test can decide whether the
test is appropriate for the particular type of cluster detection problem at hand.

5. The method gives us a unique test statistic that makes it unnecessary to perform a separate
test for each possible cluster location or each possible cluster size. .

6. The test applies to aggregated as well as non-aggregated data.

In Section 4 we illustrate the method on a data set describing the incidence of leukaemia among
the residents of Upstate New York. We end with a discussion in Section 5.
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2. TESTS FOR THE DETECTION OF CLUSTERS

An early example of a quadrat-based test for the detection of disease clusters is the test proposed
by Choynowski® which he applied to data on the distribution of brain-tumours in the Rzeszow
province in Poland. As quadrats he simply takes the 17 different counties within the study region.
He tests each quadrat individually to determine whether the number of cases in it is significantly
high, at some level a. Testing each quadrat separately introduces the problem of multiple testing,
but one can adjust for this by using a Bonferroni type procedure that would not be overly
conservative. A more serious problem is our inability to detect clusters unless their boundaries
coincide at least roughly with the county borders.

To overcome the-above limitation, Openshaw et al.!!-1? developed a graphical method called
the geographical analysis machine (GAM) that uses multiple overlapping circles of variable size as
quadrats. One lays out a fine regular lattice of I points to cover the study region. The distance
between adjacent lattice points is taken to be quite small. Then, one generates circular zones,
centered at each lattice point i, (i = 1,2, ..., ), and with a constant radius R that is typically 5 to
10 times the lattice spacing. Thus, there is considerable overlap between adjacent circles. For each
circular zone, with centre i and radius R, the method requires determination of a critical value
Ck. This is taken to be the 99-8th percentile of the distribution of the random variable C, the
number of cases in the circular zone under the hypothesis that the cases distribute perfectly at
random among the population. One considers circles where observed case count c;g exceeds the
critical value Cl% to have a significantly high incidence of the disease and then draws these
‘significant’ circles on the map. The procedure is repeated at three or four different values of R.

The technique used is hence identical to that of Choynowski® except that the quadrats overlap
and are far more numerous. In data set similar to the one we consider in this paper, it is not
unreasonable to have 100,000 or more circles. Then, although we no longer have to restrict our
search to clusters that happen to coincide with some administrative boundary, as in
Choynowski’s method, now any Bonferroni type of procedure to adjust for multiple testing is
futile due to the extremely large number of dependent tests performed. This method yields a very
useful description of the data set with which one can identify several possible clusters.

Based on Openshaw et al.'’"'?> Turnbull et al,'> have developed a test named the cluster
evaluation permutation procedure (CEPP), that directly identifies the cluster responsible for
causing rejection of the null hypothesis. The quadrats used in this method are once again
overlapping circular zones. The circles centre at the geographic centroids of the K cells into which
one has aggregated the data. Each circle, however, is constructed so as to have the same
population size P, rather than the same radius. Here, it is useful to think of P as the ‘population-
radius’ of the zones. Under the null hypothesis that the cases distribute randomly among the
individuals of the population, the random variables Cyp, k= 1,2,... K, that represent the case
counts in the various circular zones have identical probability distributions, but they are not
independent. CEPP picks the zone with the highest incidence rate, or equivalently, the zone with
the highest number of cases Mp = max{Cip:k = 1,2,...,K} and then tests significance by using
Monte Carlo simulation to sample from the null distribution of Mp. Thus CEPP uses the statistic
M, to test against a single composite alternative hypothesis whereas GAM would use each Cyp
separately for multiple hypothesis testing. However, once P is fixed, the alternative hypothesis is
that there is a ‘cluster’ among those circular zones of P persons that the method generates. Since
there is no universal choice of P for all data sets, Turnbull et al.,!3 suggest that one should carry
out their procedure at a few different representative values of P. This re-introduces multiple
hypothesis testing, and, since the tests are highly correlated, a Bonferroni type adjustment is very
conservative unless the number of different values used for P is very small.
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“The preceding remarks illustrate the crucial role played by the choice of zones in defining the
alternative hypothesis, which is too often stated imprecisely as merely the opposité of complete
spatial randomness. Further, the methods described above are limited by the difficulties asso-
ciated with multiple testing. These are the lack of a unique test statistic and the consequent
inability to assess quantitatively the overall significance of the results.

In the following section, we give a precise definition of our model which uses a composite
alternative hypothesis in a single hypothesis test. The model builds upon the ideas contained in
Openshaw et al.'!*!? and Turnbull et al.'* We then present a test based on likelihood ratio.

3. A LIKELIHOOD RATIO TEST

Consider the study region partitioned into geographic sub-divisions called cells. For each cell, we
have the co-ordinates of its geographical or population centroid, the number of individuals and
the number of disease cases. The cell centroids form what Cressie!® refers to as an irregular lattice.
If the data are not aggregated at all, then each cell contains precisely one individual. We
emphasize that we do not require any assumption about the population distribution within the
cells. Let N be the total number of individuals in the population at risk and let C be the total
number of cases. Throughout the analysis we condition on the total number of cases in the data
set and hence we treat C as a known constant.

We can broadly classify the method of this paper as a quadrat method. Just as in two of the
methods described in Section 2, we generate a number of ‘circular’ zones that we use as quadrats.
To construct the circles, we have another lattice of I circle centers. This lattice could be regular as
in Openshaw et al.'* or identical to the irregular cell lattice as in Turnbull et al.*3 Unlike previous
methiods, for each centre point we let the radius of the circles vary continuously from zero
upwards. Each of the infinite number of circles thus constructed defines a zone.

The zone defined by a circle consists of all individuals in those cells whose centroids lie inside
the circle and each zone is uniquely identified by these individuals. Thus, although the number of
circles is infinite, the number of zones will be finite. For unaggregated data the zones are perfectly
circular, that is, the individuals in a zone are exactly those located within the defining circle. With
the data aggregated into census districts, say, a zone may have irregular boundaries that depend
on the size and shape of the several contiguous census districts it includes. Individuals actually
outside the defining circle, but lying within cells whose centroids lie inside the circle, are included
in the zone. Similarly, individuals actually inside the circle, but lying within cells whose centroids
are outside the circle, are excluded. In any quadrat method, the alternative hypothesis is implicitly
defined by the particular manner in which one constructs the zones or quadrats. This does not
mean that the method can only handle the exact alternative defined. Rather, it gives an indication
of the types of alternatives for which the test has good or bad power.

With an increasing radius, the circles will eventually include the entire study region. When
a circle is so large as to include almost all of the study area it is inappropriate to talk about
a cluster in that zone even if the incidence rate is considerably higher than outside of it. If
anything, we could possibly view it as a kind of ‘negative cluster’ in those few areas that are still
outside the circle. We do not wish to incorporate such negative clusters in the alternative and
hence we need an upper bound on the radius of the circles to be considered. A natural rule of
thumb that we advocate is 50 per cent of the total population. It is important to note that the
choice should be made a priori and not by trial and error.

Denote by Z, the set of all circular zones generated in the manner described above. Let the zp9
be a point in the parameter space where p, [0, 1] and z is a three-dimensional vector that
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consists of the central co-ordinate and radius of a circle. We will interchangeably use z to denote
both the vector itself and the zone it describes. In our model there is exactly one circular zone z,
such that for all individuals within the zone, the probability of being a case is p, whereas for all
individuals outside the zone, this probability is . The alternative hypothesis is H,:z€Z, p >q.
The null hypothesis is Hy:p = ¢q. The latter signifies complete spatial randomness with each
individual equally likely to be a case.

Let n, denote the number of individuals in zone z, C, the random variable denoting the number
of cases in zone z and c, the observed value of C, in the data set. To derive the likelihood ratio test
we first express the likelihood function which is

L(z, p, g) = p(1 — pY*~gC (1 — g =Ce0), )

Since the circular zones have different population sizes, we cannot merely take our test statistic
as the maximum number of cases among all zones. It is not meaningful either, to take the
maximum of the incidence rates among all circles since the variances of these quantities are
unequal. Indeed, in many instances, the latter would lead us to pick the zone with the smallest
number of individuals from among those zones that have at least one case. Instead, we use the
likelihood ratio test statistic. The likelihood ratio is

Supz €Z,p>q L(Z, 12 q)
,q€[0, 1]). 03]
supp=q L(Z, p’ ‘1) (p q [ ])
The denominator in equation (2) reduces to
CC N-C N~C
sup pe(tpv-c ==y )
pel0, 1] N

L, depends only on the total number of cases, not on their spatial distribution, and is a constant
since we have conditioned on C. We can find the value of the numerator in two steps. First, for
a fixed zone z, we maximize over all possible 0 < g < p < 1. Let

L(z) = sup p*(1 — p)"=~=q°~%(1 — gy ") m(C7eD : @
(2} ) .
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As the most likely cluster, we pick the zone 7 € Z, for which the quantity defined by equation (5) is
maximized. Formally, we choose £ so that L() > L(z) for all ze Z. This means that 2 is the
maximum likelihood estimate of z. Identifying 2 is a necessary step for the likelihood ratio test,
but it also has a purpose in itself if we have an interest in the descriptive aspects of the problem.

If we let L(z) denote the random variable obtained by replacing ¢, with C, in equation (5), then,
combining equations (3) and (5), we can write the test statistic as

1= masz(z)'

T ©)
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. The distribution of 2 depends on the underlying inhomogeneous population distribution, and,
in general, it has no simple analytical form. If the total population is very small then it is possible
to find the exact distribution by enumerating each of the possible outcomes, namely all the
possible assignments of cases to the individuals of the population, and then computing the value
of the test statistic for each outcome. .

For large data sets, however, this is practically impossible, and thus we use the Monte Carlo
method to sample from the exact distribution of . Note that we can do this easily since we have
conditioned on the total number of cases C. The idea of significance testing based on the
randomization distribution of a test statistic is due to Fisher.'® The use of the Monte Carlo
method for sampling from the randomization distribution to conduct a hypothesis test was
suggested by Dwass.?® It was first applied to spatial point patterns by Besag and Diggle.2!

4. AN APPLICATION

The data set we analysed comes from Upstate New York, encompassing the counties of Broome,
Cayuga, Chenango, Cortland, Madison, Onondaga, Tioga, and Tompkins. We have chosen this
data set since it has previously been analysed in the literature by Turnbull et al,'3 using their own
method as well as those of Whittemore et al.’> and Openshaw et al.,!'! The same data have also
been analysed by Waller et al.'” and Waller and Turnbull?2 in the context of focused tests.

The data consists of 592 cases of leukaemia as represented in Figure 1. Since there is no
information about the exact locations of individuals and cases, we have instead used the centroids
of 790 census tracts and census block groups. Thus we are dealing with data aggregated into 790
cells. The data on the population counts and cell centroids are based on the 1980 US Census. The
total population of the area is 1,057,673. Its distribution appears in Figure 2. Data on the
leukaemia cases were obtained from the New York State Cancer Registry and cover the period
from 1978 to 1982. There is some uncertainty as to the number of cases in each census area. For
about 10 per cent of the cases, the location is known only within two or three neighbouring cells.
Such cases were divided among the groups to which they may belong in proportion to the
population in each group. This will tend to bias the conclusion away from clustering, but
Turnbull et al.'® have noted that this made little difference to their results. For the purely
illustrative aspects of our methodology this uncgrtainty is irrelevant, but due to the manner in
which it was resolved, some of the case counts have non-integer values.

For the set of zones Z upon which our alternative hypothesis depends, we use overlapping
circles with center points at the centroids of the 790 census tracts. This follows Turnbull et al.}3
The radii of the circles vary continuously from zero, in which case we include only one cell, up to
an upper limit, such that at most we include 20 per cent of the total population. This gives us an
infinite number of circles, but, since the population is concentrated on 790 lattice points, we have
a total of approximately 0-2 x 7902 = 124,820 distinct zones.

Our Monte Carlo study-consisted of 999 replicates each of which involves choosing 592
individuals at random from the 1,057,673 individuals and labeling these as cases. For each
replicate, we calculate the value of the test statistic A defined in equation (6). We order the
collection of 1000 values of A coming from the 999 replicates and from the data itself with the
highest value assigned rank 1. This means that we obtain a significant result at the 5 per cent level
if the observed value of A for the data is among the 50 highest of these 1000 values.

The observed value of the test statistic for the data is A = 472,976. The most likely cluster is the
zone 2 = A, shown in Figure 3. The rank of the observed A value in the simulated null-distribution
. is 5 out of 1000. Thus, we have a significant result (x = 0-05) and we may attribute it to the
presence of a cluster in zone A. Note that as long as the number of cases in zone A is 953, the
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Figure-1. The 592 cases of leukaemia in Upstate New York

value of the test statistic can never be lower than its observed value of 472,976 even if the
distribution of the cases outside zone A changes. This means that the cluster in zone A, by itself,
ensures rejection of H. ‘ .

It is important to realize that, even though zone A is the most likely cluster, it probably does
not coincide exactly with the ‘real’ cluster. In any application there will be many zones almost
identical to the most likely cluster for which the value of L(z) is almost as high as L(2). This is so
because a change in the boundaries of a zone so as to include only a few more persons for
instance, does not affect very much the value of L(z). One should use the most likely cluster as an
estimate for the position and radius of the real cluster in much the same manner as one would use
a maximum likelihood estimate of an unknown parameter in a parametric hypothesis testing
problem. :

It is not of interest to report all zones with nearly equal values of L(z). Table I lists the most
likely cluster, A, along with four other non-overlapping clusters. For each of the zones B-D there
is no other overlapping zone more likely to be a cluster. As is evident, not all of these zones have
high ranking values of L(z). The second zone, B, has a rank of 27 out of the 1000. If there had been
no other more likely cluster, then we would have judged B significant (x = 0-05). We would,
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Figure 2. The population density in Upstate New York. The high density area in the north is Syracuse, and in the south
B Binghamton

however, then be assessing the value of L(z) for the ‘second most likely’ non-overlapping cluster in
the data set with reference to the distribution of L(2) values that come from the most-likely
clusters in the Monte Carlo replicates. That is, if we use the test for secondary clusters it is rather
conservative. We could perhaps make our assessment with reference to the secondary clusters in
the replicates but this would still be unsatisfactory, since it would not account for the size of the
primary cluster in the data. The issue of secondary clusters is an interesting problem and deserves
a fuller treatment.

Turnbull et al.!® have applied several methods, including their own, on the same data set.
Table II provides a comparative summary of their findings with the results of the likelihood ratio
method. Despite the size of the problem and the large number of Monte Carlo replicates used, our
implementation of the likelihood ratio method required only 2 hours of computing time on an
IBM PC (PS/2 Model 90, XP486).
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Figure 3. The most likely cluster ‘A’ and four other non-overlapping clusters on a map

5. DISCUSSION

In this paper we have given a general framework for the detection of spatial disease clusters and
their evaluation using a likelihood ratio test. It was inspired by the introduction of overlapping .
circular zones as quadrats by Openshaw et al.!! and the solution by Turnbull et al.'? for circular
zones with a fixed population size. We have emphasized the relationship between the manner of
construction of the zones and the alternative hypothesis. Although we have described and
implemented the method for circular zones of variable size, one can modify the likelihood ratio
method for an alternative hypothesis that allows for zones of different shapes as well. The
likelihood ratio test takes into account an inhomogeneous population density. It can also be
modified to adjust for age-specific incidence rates. This would be necessary if the risk of the
disease increases with age, say. These modifications will be described in forthcoming work. We
conclude with the following observations: :

1. When oomparing the power of the likelihood ratio test with that of the method of Turnbull’
et al.,'® one would except that (i) the latter has higher power if the actual cluster size is close
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Table I. The most likely cluster A and four other non-overlapping clusters. The incidence rate for the

population as a whole is 0-56

Zone Number of Population Incidence Relative Radius Rank County
z cases ¢, " onm rate per likelihood in km
. 1000 L{z)/L,
A 953 99608 096 472976 63 5 Broome
B 432 36629 1-18 21088 102 27 Cortland
C 552 56806 097 1911 29 174 Onondaga
D 264 23682 111 187 28 781 Cayuga
E 34 793 429 51 0 996 Onondaga

Table II. Comparison of four methods on the leukaemia data set. Cluster size is given in
_population radius unless otherwise noted

Method Cluster size Approximate Significant
in alternative cluster (a = 0-05)
hypothesis location :
Openshaw et al.*! 1,2,4 km ABCD n/a
Whittemore et al.® n/a n/a no
Turnbull et al.}? 2500 B no
Turnbull et al.!3 5000 B no
Turnbull et al}3 : 10000 B no
Turnbull et al.!? 20000 . B yes
Likelihood ratio ‘ < 211535 AB yes
CDE no

Table III. Estimated power of the likelihood ratio test (By) and of the method of Turnbull et al. B

Cluster size ng 100 200 400 700 1000 1400 2000°' 4000
Relative risk rr 30 25 20 17 16 1-5 14 1-35
B 091 096 093 094 096 093 090 0-88
B 040 0-66 0-83 092 098 091 076 062

to the population-radius chosen in that method, and (ii) the likelihood ratio test has higher
power for cluster sizes somewhat smaller or larger than this population-radius. A very
simple power study presented in Table III confirms this. On a square, we selected randomly
the locations of 100 cells. We assigned each cell a population of 100 to make a total of 10000
individuals. We placed another square with variable population size, n, in the center to
constitute the true cluster. We then randomly assigned 1000 cases among the population in
such a way that individuals within the true cluster had a relative risk that was rr times higher
than those outside. We set the circle size (population radius) at 1000 with the method of
Turnbull et al., and we used an upper bound of 5000 for our test. To obtain the power
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estimates, we took 49,999 replicas from the null distribution and 5000 from each of the
alternatives. Note that both methods perform well even though the real cluster is not
circular.

2. There is a long tradition in epidemiology of pubhshmg disease atlases, with incidence rates
represented as different colors on a map. If one always complemented a disease atlas with an
inference test for the detection of clusters, then public health officials could better prioritize
the regions within which to conduct thorough investigations, with minimization of the time
taken to detect genuine abnormalities. Once such a system is in place, one would perhaps
like to have a sequential procedure for continuous monitoring. _

3. The purpose of the new test for the detection of clusters, which we have presented here, is not

. limited to generating etiological studies. In many data sets we would find no significant
cluster, but this can still be a very valuable finding. As Rothman?3 and many others have
pointed out, vast resources are spent on the investigation of all possible alarms, often in vain,
since many of these are plausibly explained as random fluctuations in the incidence rates.
We do not imply that clusters that turn out non-significant with our method should never
undergo investigation, but it could reduce the controversies that often occur with the
reporting of potential clusters. One could then swiftly move resources to other more.
important tasks.

4. We wish to express a word of caution. The observed significance resulting from a particular
cluster depends on the size of the area under study and it is not meaningful to attribute
significance to a cluster without reference to the study region.

5. We mentioned in Section 3 that the centre points of the circular zones need not coincide with
the locations of cells. If we were to pick only one centre point that coincides with the source
of a possible health hazard, such as a coal plant or dump site, then we would have a focused
test. In this case all zones have the same centre while the radius would still vary continu-
ously. How such a focused test compares with existing methods merits further investigation.

(
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