J. R. Statist. Soc. A (2001)
164, Part1, pp.61-72

Prospective time periodic geographical disease
surveillance using a scan statistic

Martin Kulldorff

University of Connecticut, Farmington, USA
[Received January 2000. Revised September 2000]

Summary. Most disease registries are updated at least yearly. If a geographically localized health
hazard suddenly occurs, we would like to have a surveillance system in place that can pick up a new
geographical disease cluster as quickly as possible, irrespective of its location and size. At the same
time, we want to minimize the number of false alarms. By using a space—time scan statistic, we
propose and illustrate a system for regular time periodic disease surveillance to detect any currently
‘active’ geographical clusters of disease and which tests the statistical significance of such clusters
adjusting for the multitude of possible geographical locations and sizes, time intervals and time
periodic analyses. The method is illustrated on thyroid cancer among men in New Mexico 1973—
1992.

Keywords: Chronic disease surveillance; Geographical clusters; Infectious disease surveillance;
New Mexico; Space-time clustering; Spatial statistics; Thyroid cancer

1. Introduction

A common form of geographical disease surveillance is to select a disease, a geographical
region and a fixed time period for mapping disease rates. In addition to the most basic maps
with the observed rates depicted for non-overlapping geographical areas, several statistical
methods have been proposed both for disease mapping (Choynowski, 1959; Clayton and
Kaldor, 1987; Besag et al., 1991; Bernardinelli and Montomoli, 1992; Lawson and Williams,
1993; Martuzzi and Elliott, 1996; Kafadar, 1996, Rushton and Lolonis, 1996) and for testing
whether an observed pattern is probably due to chance (Cliff and Ord, 1973; Turnbull ef al.,
1990; Cuzick and Edwards, 1990; Besag and Newell, 1991; Diggle and Chetwynd, 1991;
Walter, 1994; Tango, 1995; Martuzzi and Hills, 1995; Kulldorff, 1997; Bithell, 1999;
Kulldorff, 1999; Tango, 2000). The former utilizes spatial smoothing techniques whereas the
latter are referred to as tests for spatial randomness.

Many countries and regions maintain disease registries, most commonly for cancer and
birth defects, and many national and local health departments continuously collect infor-
mation about occurrences of different infectious diseases. Incident cases are typically added
to a disease registry daily, monthly or yearly, with the timescale depending on the type of
disease and the capacity of the registry system. To detect emerging geographical clusters due
to some suddenly occurring risk factor quickly can be of great public health importance. It
can be used to detect previously unknown diseases, previously unknown risk factors for
known diseases or the previously unknown local existence of known risk factors.
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For a well-defined geographical area, there are several temporal statistical techniques
for monitoring and detecting a sudden temporal increase in the risk of disease (Bjerkedal
and Bakketeig, 1975; Weatherall and Haskey, 1976; Chen, 1978, 1979; Chen et al., 1982;
Radaelli, 1996). If an outbreak is geographically localized though, a sudden and important
increase in one area may be hidden as part of the aggregated data for the geographical region
as a whole. One way to overcome this problem is to divide the larger geographical region into
several smaller areas, and to monitor each of these areas individually. With many areas
though, there is multiple testing, and we would be overwhelmed with false alarms if the
nominal significance level is used. More importantly, if an outbreak occurs on the border
between areas or in only a small part of an area, an important outbreak may be missed simply
because it did not conform to the predefined geographical boundaries.

The one-dimensional scan statistic has long been used for purely temporal disease
surveillance (Wallenstein, 1980; Weinstock, 1981), and a spatial scan statistic has been used
for purely geographical surveillance (Kulldorff, 1997). In this paper, a time periodic geo-
graphical disease surveillance system is proposed, based on a space—time scan statistic. In
this system, the statistical inference is adjusted for the multiple testing arising from many
possible geographical locations and sizes of disease clusters. Except for the limits imposed by
the aggregation level for which data are available, the method can detect spatial clusters
irrespective of any predefined geographical boundaries, by combining any number of close
locations into the same cluster. The method strives to detect only those clusters that are still
‘alive’, meaning that the excess risk is still present during the last time period for which data
are available. It can detect clusters irrespective of the cluster’s ‘age’, including long-existing
clusters with moderately excess risk as well as recently emerged clusters with a high excess
risk. The statistical inference adjusts for the many possible time lengths. Finally, as there is
also multiple testing due to the repeated time periodic analyses, the surveillance system is
constructed so that it adjusts for the multitude of analyses that have already been per-
formed.

The method proposed in this paper should not be confused with traditional space—time
disease clustering methods (Knox, 1964; Ederer et al., 1964; Mantel, 1967, Wallenstein et
al., 1989; Jacquez, 1996; Kulldorff ef al., 1998a). These are retrospective in nature, designed
to test whether a disease is randomly distributed over space and time for a predefined
geographical region during a predetermined time period, whereas the currently proposed
method is prospective in nature, with repeated time periodic analyses (Rogerson, 1997).

Thyroid cancer incidence data for men in New Mexico are used to illustrate the time
periodic geographical disease surveillance system. All analyses are adjusted for age by using
indirect standardization. p-values are based on Monte Carlo hypothesis testing (Dwass, 1957)
using 999 random replications of the data under the null hypothesis of spatial randomness.
All analyses were done using the publicly and freely available software SaTScan (Kulldorff e?
al., 1998Db), developed at the National Cancer Institute.

2. lllustrative data set: male thyroid cancer in New Mexico

For illustration, we use male thyroid incidence data from New Mexico during 1973-1992,
collected by the New Mexico Tumor Registry for the National Cancer Institute’s
‘Surveillance, epidemiology and end results program’. The data are geographically aggregated
to the 32 counties that existed in 1973. A total of 333 cases were reported. The incidence rate
was 2.4 per 100000. As the denominator we use the official age-specific population estimates
for each individual year and for each county. These are based on the decennial US census
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counts in conjunction with estimates of births, deaths and migration. The total male pop-
ulation increased from 546 000 in 1973 to 779 000 in 1992.

Thyroid cancer is rare. The annual incidence in the USA is estimated at 5.2 cases per
100 000 people. The incidence is lower for men than for women, with 2.9 and 7.4 cases per
100000 respectively. The lifetime risk of being diagnosed with thyroid cancer is 0.26% for
men and 0.72% for women (Ries et al., 1999). In an international comparison of places with
available data, the age-adjusted rates were highest in Hawaii and Iceland, and lowest in
Bombay, England and Wales (Parkin et al., 1992). Known risk factors include the exposure
to ionizing radiation during childhood (Duffy and Fitzgerald, 1950; Ron et al., 1989),
radiation treatment for benign head and neck conditions (Shore et al., 1985), radioactivity
from nuclear explosions (Robbins and Adams, 1989; Prentice et al., 1982; Kazakov et al.,
1992) and work as a radiology technician (Boice et al., 1992) or X-ray operator (Carstensen et
al., 1990).

With a 5-year relative survival rate of 95% thyroid cancer is one of the least fatal forms of
cancer. The annual mortality rates in the USA are about the same for men and women, with
0.3 deaths per 100 000 during 1992-1996. Among the 50 states and the District of Colombia,
and for the years 1992-1996, New Mexico had the 21st highest age-adjusted male mortality
rate with 0.3 deaths per 100000 (Ries et al., 1999).

3. Purely geographical surveillance

Subsequent theory builds on the purely spatial scan statistic (Kulldorff, 1997), and we shall
first briefly describe this method and apply it to the New Mexico thyroid cancer data for
different time periods to facilitate comparisons.

3.1. The spatial scan statistic

The spatial scan statistic has been developed to test for geographical clusters and to identify
their approximate location (Kulldorff, 1997). The number of events, e.g. incident cases, cases
with a late stage breast cancer diagnosis or deaths, may be assumed to be either Poisson or
Bernoulli distributed. The Poisson model should be used if for example the denominator
reflects person-years lived during a 5-year period, and we are interested in the geographical
distribution of incident breast cancer cases during these 5 years, adjusting for the popula-
tion at risk. The Bernoulli model should be used if the denominator consists of specific
individuals, such as all incident breast cancer cases, and we are interested in the geographical
distribution of late stage incident cases adjusting for the geographical distribution of all
cases. Depending on the availability of data, the spatial scan statistic can be used for either
aggregated data such as census areas or for the special case of precise geographical co-
ordinates, where each ‘census area’ contains only one person at risk.

The spatial scan statistic imposes a circular window on the map and lets the centre of the
circle move over the area so that at different positions the window includes different sets of
neighbouring census areas. If the window contains the centroid of a census area, then that
whole area is included in the window. For each circle centroid, the radius of the circular
window is varied continuously from 0 up to a maximum radius so that the window never
includes more than 50% of the total population at risk. In this way, the circular window is
flexible both in location and in size. In total the method creates a very large number of
distinct circular windows, each with a different set of neighbouring counties within it, and
each a possible candidate for containing a cluster of events.
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Conditioning on the observed total number of cases, N, the definition of the spatial scan
statistic S is the maximum likelihood ratio over all possible circles Z,

B m;lx{L(Z)} B L(Z)
=10

(1)

where L(Z) is the maximum likelihood for circle Z, expressing how likely the observed data
are given a differential rate of events within and outside the zone, and where L, is the
likelihood function under the null hypothesis.

Let n, be the number of cases in circle Z. For the Poisson model, let ;4(Z) be the expected
number under the null hypothesis, so that u(4) = N for A, the total region under study. It

can then be shown that
LZz) { n, }4{ N-—n, }N”Z ®
L, MZ) N—w(Z)

if n, > w(Z) and L(Z)/L, = 1 otherwise. Details, including derivations as likelihood ratio
tests, have been given elsewhere (Kulldorff, 1997).

As this likelihood ratio is maximized over all the circles, it identifies the circle that consti-
tutes the most likely cluster. Its p-value is obtained through Monte Carlo hypothesis testing
(Dwass, 1957).

The spatial scan statistic has the following features, which make it particularly suitable as a
tool for surveillance purposes:

(a) it adjusts both for the inhomogeneous population density and for any number of
confounding variables;

(b) by searching for clusters without specifying their size or location the method ameli-
orates the problem of preselection bias;

(c) the likelihood-ratio-based test statistic takes multiple testing into account and delivers
a single p-value for the test of the null hypothesis;

(d) if the null hypothesis is rejected, we can specify the approximate location of the cluster
that caused the rejection.

In addition to the most likely cluster, the method identifies secondary clusters in the data
set and can order them according to their likelihood ratio. There will always be sets of census
areas that overlap in part with the most likely cluster and that have almost as high a
likelihood, since adding or subtracting a few areas does not normally change the likelihood
greatly. We do not report on all clusters of this type since most of them provide little
additional information, but their existence means that, although we can pin-point the general
location of a cluster, its exact boundaries must remain uncertain. Thus we always refer to a
cluster’s ‘approximate location’.

The spatial scan statistic has been used for different health events such as the incidence of
leukaemia (Hjalmars et al., 1996), systemic sclerosis mortality (Walsh and Fenster, 1997), late
stage breast cancer (Sheehan et al., 2000) and the incidence of soft tissue sarcoma (Viel et al.,
2000).

3.2.  Purely spatial analysis of the New Mexico data
Suppose that we travel back in time, and after collecting the 1978 data we do a purely spatial
analysis of the 1973-1978 data using the spatial scan statistic. During this time period 99 male
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Fig. 1. Most likely cluster of male thyroid cancer in New Mexico for the time period 1973-1978, using a purely
spatial age-adjusted analysis: the cluster consists of Bernalillo and Valencia counties (p = 0.44)

thyroid cancer cases were detected in New Mexico. The most likely cluster consists of
Bernalillo and Valencia counties in the upper central part of the state, including Albu-
querque, the largest city in New Mexico (Fig. 1). In this area 46 cases were observed whereas
34.6 were expected, with p = 0.441 (Table 1). Our conclusion is hence that, for this time
period, there is no evidence for a geographically differential risk of thyroid cancer in New
Mexico.

However, in a cancer registry, new data are collected and added to the data files yearly. It
would be simple to repeat the purely spatial analysis each year with the additional data added
together with the corresponding updated population numbers. The results of such yearly
analyses are given in Table 1.

Table 1. Purely spatial analyses of male thyroid cancer in New Mexico, by using the purely spatial scan
statistict

Data years Most likely cluster} Cluster years Cases Expected  Relative risk  p

1973-1978  Bernalillo, Valencia 1973-1978 46 35 1.3 0.44
1973-1979  Bernalillo, Valencia 1973-1979 52 40 1.3 0.48
1973-1980  Bernalillo, Valencia 1973-1980 58 45 1.3 0.39
1973-1981  Bernalillo, Valencia 1973-1981 68 51 1.3 0.10
1973-1982  Bernalillo, Valencia 1973-1982 79 58 1.4 0.04
1973-1983 Bernalillo, Valencia 1973-1983 84 62 1.4 0.04
1973-1984  North-central counties 1973-1984 113 90 1.3 0.05
1973-1985  North-central counties —San Miguel 1973-1985 115 95 1.2 0.18
1973-1986 North-central counties + Colfax, Harding 1973-1986 129 108 1.2 0.16
1973-1987  North-central counties + Colfax, Harding 1973-1987 142 117 1.2 0.05
1973-1988  North-central counties —San Miguel 1973-1988 143 115 1.2 0.02
1973-1989  North-central counties + Colfax, Harding 1973-1989 165 134 1.2 0.01
1973-1990  North-central counties + Torrance 1973-1990 174 144 1.2 0.02
1973-1991 North-central counties + Colfax, Harding 1973-1991 186 155 1.2 0.02
1973-1992  North-central counties + Torrance 1973-1992 199 164 1.2 0.01

+The p-values are not adjusted for the repeated time periodic analyses conducted since 1978.
1The north-central counties are Bernalillo, Los Alamos, Mora, Rio Arriba, Sandoval, San Miguel, Santa Fe and
Taos.
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3.3. Limitations of repeated purely spatial analyses
There are two problems with frequently repeating the purely spatial analyses as part of a
time periodic surveillance system. Firstly, we have low power to detect emerging clusters
quickly. If a true excess risk is only present during the last few years, then the fact that we
are doing a purely spatial analysis for the whole time period dilutes the strength of the
cluster by including random fluctuations of the rate for earlier years when the risk was not
high. Secondly, while we are adjusting for the multiple testing stemming from many
possible cluster locations and cluster sizes, we are not adjusting for the multiple testing
due to repeated analyses every year. For example, of the 15 analyses presented in Table 1
some are statistically significant whereas others are not, making it difficult to interpret the
results.

We propose a solution to the first problem in Section 4, and then a simultaneous solution
to both problems in Section 5.

4. Detecting emerging clusters

If we do a purely spatial analysis for an extensive time period, we have low power to detect
recently emerging clusters. One way to resolve this is to do a purely spatial analysis including
only the last few years. The suitable number of years is typically unknown though. If we
include too few years, we might not have enough power to detect a low to moderate excess
risk that has been present for a considerable time, and, if we include too many years, we
might not have enough power to detect a very recent high excess risk cluster. A solution is to
use a space—time scan statistic.

Instead of a circular window in two dimensions, the space—time scan statistic uses a
cylindrical window in three dimensions. The base of the cylinder represents space, exactly as
with the purely spatial scan statistic, whereas height represents time. The cylinder is flexible in
its circular geographical base as well as in its starting date, independently of each other. This
means that for each possible circle location and size we consider each possible starting date
for the cluster and vice versa. We consider only those cylinders that reach all the way to the
end of the study period. Hence, we consider only ‘alive’ clusters, those that are still active or
present, while ignoring those that may have existed historically but which are no longer a
public health problem. In mathematical notation, let [Y,, Y,] be the time interval for which
data exist, and let s and ¢ be the start and end dates of the cylinder respectively. We then
consider all cylinders for which ¥, < s <t =Y,.

The likelihood ratio test statistic is constructed in the same way as for the purely spatial
scan statistic, using equations (1) and (2). For the random data sets, cases are generated so
that both spatial areas and temporal intervals have a random number of cases, independently
of each other. The computational algorithm for calculating the likelihood for each window
has to work in three rather than two dimensions though, and it is hence more computer
intensive.

Analysing the years 1973-1978, we find that the most likely cluster consists of Bernalillo,
McKinley, Valencia, San Juan, Catron, Sandoval, Los Alamos and Rio Arriba counties,
during the time period 1975-1978 (Table 2). Of the six years, only the last four are included in
the cluster. With 48 cases observed, and 36 expected, p = 0.60. Hence, even when allowing for
newly emerging clusters, there is no indication that there are any areas in New Mexico that by
1978 had a geographical excess risk of male thyroid cancer.

As with the purely spatial analysis, it is possible to repeat this procedure every year as new
data are obtained. The results are presented in Table 2. In 1985 there suddenly appears a very
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Table 2. Detection of recently emerging clusters of male thyroid cancer in New Mexico, by using the space—
time scan statistict

Data years Most likely cluster?; Cluster years Cases Expected  Relative risk  p
1973-1978  Bernalillo + 7 counties west 1975-1978 48 36 1.4 0.60
1973-1979  Los Alamos, Rio Arriba 1975-1979 9 33 2.7 0.58
1973-1980 Los Alamos, Rio Arriba 1975-1980 10 3.8 2.6 0.54
1973-1981  North-central counties —San Miguel 1975-1981 72 53 1.4 0.19
1973-1982  North-central counties—San Miguel 1975-1982 85 62 1.4 0.08
1973-1983 Bernalillo, Valencia 1975-1983 84 62 1.4 0.13
1973-1984  North-central counties 1973-1984 113 90 1.3 0.14
1973-1985  Lincoln 1985 3 0.2 13.8 0.23
1973-1986  North-central counties + Colfax, Harding 1973-1986 129 108 1.2 0.49
1973-1987  North-central counties + Colfax, Harding 1973-1987 142 117 1.2 0.21
1973-1988 North-central counties—San Miguel 1973-1988 143 115 1.2 0.08
1973-1989  North-central counties + Colfax, Harding 1973-1989 165 134 1.2 0.06
1973-1990 Los Alamos, Rio Arriba, Santa Fe, Taos 1979-1990 41 22 1.8 0.06
1973-1991  Los Alamos 1989-1991 7 0.9 7.6 0.02
1973-1992  Los Alamos 1989-1992 9 1.2 7.6 0.002

TThe p-values are not adjusted for the repeated time periodic analyses conducted since 1978.
1The north-central counties are Bernalillo, Los Alamos, Mora, Rio Arriba, Sandoval, San Miguel, Santa Fe and
Taos; the counties west are McKinley, Valencia, San Juan, Catron, Sandoval, Los Alamos and Rio Arriba.

localized cluster in Lincoln County with three cases and a relative risk of 13.8. Although not
statistically significant that year, it can be viewed as a potential cluster awaiting confirmation
or rejection after one more year of data has been collected. With no cases in Lincoln County
in 1986, it was no longer the most likely cluster that year, and most probably a chance
occurrence.

In 1991, we suddenly have a statistically significant cluster emerge, consisting of Los
Alamos County and spanning the years 1989-1991 with seven cases when 0.9 were expected
(p = 0.02) (Fig. 2). The subsequent years’ analysis identifies a cluster in the same location
for the time period 1989-1992, with two additional cases, for a total of nine cases when 1.2
were expected (p = 0.002). It is important to note though, that although these p-values are
adjusted for the many possible geographical cluster locations and sizes, as well as for the
many possible temporal lengths of the clusters, they reflect the p-value for a single analysis
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Fig. 2. Most likely cluster of male thyroid cancer in New Mexico for the time period 1973-1992, using the time
periodic surveillance to detect emerging clusters: the cluster consists of Los Alamos county (p = 0.016); the
analysis was adjusted for age and the multiple time period analyses
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and do not adjust for the multiple time periodic analyses conducted over the years. That will
be resolved in the next section.

5. Time periodic surveillance

New cases are added to disease registries regularly as they occur, and for surveillance
purposes it is important to reanalyse the data in periodic intervals. One should then adjust for
the multiple analyses conducted over time. This can be done by not only adjusting for the
many possible geographical and temporal cluster locations and sizes but also for all the
previous analyses that have already been conducted. It is accomplished through a slight
modification to the space—time scan statistic.

Since we are interested in ‘alive’ clusters, the likelihood for the real data set is taken as the
maximum over all cylinders reaching the end of the study period, just as before, i.e. we
consider those cylinders for which Y; < s <t =Y,. For the random data sets though, the
likelihood is maximized over all cylinders used in previous analyses in addition to the current
cylinders, to adjust for the multiple analyses conducted, i.e. those cylinders for which
Yi<s<t<Y,and ¢t > Y,, where Y,, is the year in which the time periodic surveillance
began. At any given moment, an observed cluster is then statistically significant at the a-
level if the probability of having detected a cluster with higher likelihood during any of the
previous analyses or the present analysis is at most «. The most likely clusters will always be
the same as with the analysis from the previous section, but their p-values will be higher,
reflecting the time period adjusted analyses.

Using this procedure, the results for the thyroid cancer data are given in Table 3. As
can be seen for the 1973-1991 data, with p =0.13 the Los Alamos cluster is not
statistically significant when adjusting for the time periodic surveillance. For the 1973—
1992 data, however, the Los Alamos cluster is statistically significant, with p = 0.016. We
have not shown all yearly analyses in Table 3 as the entries are identical with those in
Table 2 except for the p-values, which are all larger and hence non-significant for the
earlier years.

Fig. 3 depicts the cumulative observed and expected number of male thyroid cases in Los
Alamos County from 1973 to 1992. Although four cases occurred in 1989, that was not
enough to declare Los Alamos a statistically significant cluster. Not until 1992 was it clear
that there was a local excess which was not explainable by chance.

If a surveillance system is in place for a long time period, it might be too conservative to
adjust the inference for all previous analyses. In such a setting, we could instead specify that
we want at most a probability « of falsely rejecting the null hypothesis during any specific
length of time, say 20 years for a chronic disease. The method proposed can easily be
modified to accomplish this, by only including those cylinders analysed during the preceding

Table 3. Detection of recently emerging clusters of male thyroid cancer in New Mexico,
by using the space-time scan statistict

Data years  Most likely cluster  Cluster years — Cases Expected Relative risk — p

1973-1991 Los Alamos 1989-1991 7 0.9 7.6 0.13
1973-1992 Los Alamos 1989-1992 9 1.2 7.6 0.016

+The p-values are adjusted for the repeated time periodic analyses conducted since 1978. Entries
in this table are identical with those of Table 2 except for the p-values, which are larger.
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cases

1973
1975
1977
1979
1981
1983
1985
1987
1989
1991

Fig. 3. Cumulative observed (#) and expected (®) numbers of male thyroid cases in Los Alamos County from
1973 to 1992

20 years when calculating the likelihood for the most likely cluster in the random data sets,
i.e. those cylinders for which ¥V, < s<rand ¥, —-20 <1< Y,.

6. Discussion

As with chronic diseases, it is of interest to detect localized infectious disease outbreaks as
early as possible without having to specify either the geographical location and size or the
temporal length of the cluster a priori. In infectious disease surveillance though, we are
not always interested in clusters present during a very long time period, as these would be
reflective of populations that are prone to infection rather than of an important emerging
health hazard. Although both types of cluster may be of interest, time periodic infectious
disease surveillance is typically geared towards the latter. For such analyses, one should not
consider all cylinders of all possible temporal lengths but only those up to some prespecified
maximum. Depending on the particular infectious disease, that maximum could be a couple
of days or a few years.

Within a surveillance system, it is not advisable to maintain a strict cut-off for the p-
value to determine whether a detected cluster should be investigated or not. Rather, the
p-value should serve as an indicator concerning the evidence for a real cluster, and the
amount of effort devoted to an initial investigation should depend on how strong this
evidence is. When the evidence is strong, a detailed epidemiological study with individual
case histories should be conducted. In looking for a local explanation for the observed
excess, it is then important to realize that some cases will be unrelated to that ex-
planation and would have occurred anyway, constituting what may be called the back-
ground rate.

The proposed prospective surveillance system cannot detect historic clusters that both
began and ended before the time periodic surveillance began. Even though it is too late to do
anything about such clusters, they may nevertheless be of great interest for aetiological
reasons. To detect such clusters we should instead do a single analysis using a version of the
space-time scan statistic where both the start and the end date of the cylinders vary
(Kulldorff et al., 1998a), or some other retrospective surveillance method.

Other prospective time periodic geographical surveillance systems have been proposed by
Rogerson (1997, 2001) and Jarpe (1999). These are geared towards detecting the sudden
appearance of clustering as a global phenomenon throughout the geographical area under
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study, as opposed to the currently proposed method, which is used to detect the specific
geographical location of emerging clusters and to evaluate their significance. The two types of
method complement each other, being suitable for different types of inquiries.

A statistically significant cluster of male thyroid cancer was found in Los Alamos,
emerging in 1989 and detectable in 1992. The observed cluster could be due to errors in the
data, either in the numerator, denominator or geographical co-ordinates, and errors in data
should always be the first suspect when evaluating a statistically significant cluster. No such
errors were found. The New Mexico Department of Health have investigated the individual
nature of each of 17 male cases reported during 1970-1995, including the nine cases
diagnosed in 1989-1992 as well as three cases diagnosed in 1993-1995, confirming all cases
(Athas, 1996). The ‘stage-of-disease’ distribution was similar to that for the rest of New
Mexico, excluding better screening programmes as a likely explanation for the Los Alamos
cluster. Three of the 17 cases had a history of therapeutic ionizing radiation treatment to the
head and neck during the 1940s and 1950s, which is an established risk factor. Two of these
were diagnosed after 1988. At least eight of the 17 cases had been regularly monitored
for exposure to radiation due to their particular work tasks at the Los Alamos National
Laboratory. Two of these, both diagnosed after 1988, had significant workplace-related
exposure to ionizing radiation from atmospheric weapons testing fieldwork, another
established risk factor. It is hence safe to say that the observed excess is at least in part
due to known risk factors of a local nature that is unique to the population of Los Alamos.

When interpreting the results of prospective surveillance, it is important to consider the
latency period of the disease. For example, in our example there were several subjects whose
exposure to known risk factors had occurred many years before the diagnosis. If the exposure
is in the local environment, long latency reduces the power of the analysis as some exposed
individuals will have moved away between exposure and diagnosis, while unexposed indi-
viduals have moved in. Moreover, when a cluster is detected, it is important not only to look
at recent exposures when searching for the cause. If the latency is long then new cases will
continue to occur even if the exposure is removed, and that is important to keep in mind
when doing follow-up monitoring and evaluation.

The choice of 50% of the population at risk as the maximum circle size is natural as it
allows both small and large clusters to be detected, while ignoring those ‘clusters’ that contain
more than half the population at risk, as these would be more suitably interpreted as a
‘negative cluster’ of lower than expected risk outside the circle. Other choices of the
maximum are also possible. In this paper we were only interested in detecting areas with an
excess risk for disease, but the space—time scan statistic can also be used to detect areas with
exceptionally low rates (Kulldorff ef al., 1998b).

In conclusion, the space—time scan statistic can serve as an important tool for systematic
time periodic geographical disease surveillance. It is possible to detect emerging clusters, and
we can adjust for the multiple tests performed over time. No a priori hypotheses about cluster
location, size or length need to be made. The method can be used at different levels of
geographical and temporal aggregation, and for different types of disease. Although it is
computer intensive, the method is not overly complex. The analyses in this paper took
between 5 and 755 to run on a 400 MHz Pentium Pro computer.
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