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Summary

Spatial scan statistics are widely used for count data to detect geographical disease clusters

of high or low incidence, mortality or prevalence and to evaluate their statistical signifi-

cance. Some data are ordinal or continuous in nature, however, so that it is necessary to

dichotomize the data to use a traditional scan statistic for count data. There is then a loss

of information and the choice of cut-off point is often arbitrary. In this paper, we propose

a spatial scan statistic for ordinal data, which allows us to analyze such data incorporating

the ordinal structure without making any further assumptions. The test statistic is based

on a likelihood ratio test and evaluated using Monte Carlo hypothesis testing. The pro-

posed method is illustrated using prostate cancer grade and stage data from the Maryland

Cancer Registry.
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1 Introduction

Spatial scan statistics based on the likelihood ratio test are widely used for detecting geo-

graphical clusters. Such analyses have been available for count data using either a Poisson

or Bernoulli model [1]. Bernoulli-based scan statistics are used when we have dichotomous

variables such as cases and non-cases (e.g. people with and without a certain disease) or

cases with two different types of disease characteristics (e.g. patients with late/early stage

of cancer). Examples of use of the Bernoulli-based scan statistic are found in studies by

Han et al. [2] who searched for geographical clusters of high rates of breast cancer cases

in western New York and by Brooker et al. [3] who identified significant spatial clusters

of malaria cases in a highland area of western Kenya. Poisson based scan statistics are

used for the number of cases compared to the underlying population at risk such as disease

mortality or incidence data. Jennings et al. [4] used the Poisson based scan statistic to
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determine whether statistically significant geographic clusters of high prevalence gonorrhea

cases can be located after controlling for race/ethnicity in Baltimore, Maryland. Other

examples include studies of childhood mortality in rural Burkina Faso (West Africa) [5]

and of regional variation in the incidence of symptomatic pesticide exposure in Oregon [6].

Some data are ordinal in nature. For example, in cancer registry data the stage of

breast cancer is often classified as local, regional or distant, based on the extent of disease

presence at the time of diagnosis. We may then be interested in geographical areas with

high (or low) rates of cases with more extensive disease. One approach to analyze such

data is to dichotomize and use a Bernoulli-based scan statistic, which may be desired if

one has a specific (e.g. clinically determined) cut-off point in mind. Rushton et al. [7]

used a dichotomized cancer stage (early/late) to identify areas with high rates of late stage

colorectal cancer cases in Iowa. Sheehan and DeChello [8] also dichotomized the breast

cancer stage to examine spatially the proportion of breast cancer cases diagnosed at late

stage in Massachusetts from 1988 through 1997. However, there may be some loss of

information in dichotomizing such data. Therefore, it may be better to use a probability

model that incorporates the ordinal structure of the data rather than dichotomizing.

In this paper we propose a spatial scan statistic for ordinal data, which allows us to

investigate such data without dichotomization. The proposed method is based on the

likelihood ratio test and the significance of the test statistic is evaluated using Monte

Carlo hypothesis testing [9]. In section 2, the spatial scan statistic for ordinal data is

introduced and inference on the detected clusters is discussed. In section 3, the proposed

method is illustrated with an example of prostate cancer data in Maryland on stage and

grade of disease. The results from the proposed procedure are compared with those from

the Bernoulli-based scan statistic using different cut-off points. This paper ends with a

discussion in section 4.
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2 Scan Statistic for Ordinal Data

2.1 Test Statistic

The spatial scan statistics are based on the likelihood ratio test. The most likely cluster is

the area associated with the maximum value of the likelihood ratio test statistic. To find

such a cluster, we first construct a collection of zones (scanning windows) and each of the

zones is a candidate for the most likely cluster. We compute the value of the likelihood

for every zone, from which we find the maximum. In other words, the collection of zones

is a parameter space for the cluster, over which the likelihood ratio is maximized. We

consider circular shape scanning zones of variable size. For exact point data, the collection

of zones is all possible circular areas centered at every point. For aggregated data into sub-

regions of a study area such census block groups, which are more commonly available, a

candidate cluster is a set of sub-regions whose centroids are within the scanning circle. We

include all potential scanning zones of any size at every location, but we may want to limit

the maximum cluster size since a too large cluster would not be useful. For our analyses

presented in section 3, the maximum cluster size was set to 50% of the total population.

Now we introduce the spatial scan statistic for ordinal data. Suppose that we have

a study area composed of I sub-regions and an outcome variable of interest recorded in

K categories. Let cik be the number of observations in location i and category k, where

i = 1, . . . , I and k = 1, . . . , K. The categories are ordinal in nature, so that for example

a larger k reflects a more serious disease stage. Let ci(=
∑

k cik) be the total number of

observations in location i, Ck(=
∑

i cik) be the total number of observations in category k,

and C(=
∑

k

∑
i cik) be the total number of observations in the whole study area. We can

write down the likelihood function for the ordinal model as

L(Z, p1, · · · , pK , q1, · · · , qK) ∝
∏

k

(∏
i∈Z

pcik
k

∏
i/∈Z

qcik
k

)
(1)
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where pk is the unknown probability that an observation within the scanning window Z

belongs to category k and qk is the unknown probability of an observation outside the

scanning window Z belongs to category k. Note that
∑

k pk = 1 and
∑

k qk = 1. The null

hypothesis is that the probability of being in category k within the scanning window is the

same as outside the scanning window (H0 : p1 = q1, . . . , pK = qK). We consider

Ha :
p1

q1

≤ p2

q2

≤ · · · ≤ pK

qK

(2)

as an alternative hypothesis, with at least one inequality being strict. This ensures that

detected clusters represent an area with high rates of higher stages than the surrounding

area. This type of order restriction is called a likelihood ratio ordering [10]. We also can

consider the opposite type of clusters with lower stages by changing the less than or equal

signs to greater than or equal signs. To scan for both types of clusters simultaneously,

we should include both options, but not sequences of pk/qk that are neither consistently

increasing nor decreasing. For K = 2, we get the existing Bernoulli-based spatial scan

statistic as a special case [1].

The likelihood ratio test statistic is expressed as

λ =
maxZ,Ha L(Z, p1, . . . , pK , q1, . . . , qK)

maxZ,H0 L(Z, p1, . . . , pK , q1, . . . , qK)
=

maxZ L(Z)

L0

(3)

with

L0 =
∏

k

∏
i

p̂o
cik
k =

∏
k

(
Ck

C

)P
i cik

=
∏

k

(
Ck

C

)Ck

where p̂ok = Ck/C(= q̂ok) is the maximum likelihood estimator (MLE) of pk(= qk) under

the null hypothesis, and with

L(Z) =
∏

k

(∏
i∈Z

p̂cik
k

∏
i/∈Z

q̂cik
k

)

where p̂k and q̂k are the MLEs of pk and qk under the alternative hypothesis (2). Note that
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we condition on the total numbers observed in each category (C1, . . . , CK), which ensures

that our analysis is based on the spatial distribution of observations, not on the total number

observed. This will become clearer when the randomization procedure is described in the

next section. Notice that L0 depends only on (C1, . . . , CK) and hence L0 is a constant.

The next step is to obtain the MLEs of pk and qk under (2). Let Wk =
∑

i∈Z cik,

Uk =
∑

i/∈Z cik, W =
∑

k Wk and U =
∑

k Uk. Note that Ck = Wk + Uk and C = W + U .

Dykstra et al. [10, Theorem 2.1] have shown that the MLEs of pk and qk are given by

p̂k =

(
Wk + Uk

W

)
E(W+U)

(
W

W + U
|T
)

k

(4)

and

q̂k =

(
Wk + Uk

U

)
E(W+U)

(
U

W + U
|A
)

k

(5)

where T = {(θ1, . . . , θK); θ1 ≤ · · · ≤ θK} and A = {(θ1, . . . , θK); θ1 ≥ · · · ≥ θK} with

θk = Wpk/(Wpk + Uqk) for k = 1, . . . , K. Ev(B|C) denotes the isotonic regression of

B = (B1, . . . , BK) with weights v = (v1, . . . , vK) onto the cone C.

It is possible to calculate (4) and (5) explicitly using the “Pool-Adjacent-Violators”

algorithm as described by Barlow et al. [11]. If the observed rate (Wk/W )/(Uk/U) is

nondecreasing for k = 1, . . . , K, then p̂k and q̂k are the same as the unrestricted MLEs

p̃k = Wk/W and q̃k = Uk/U . With the alternative hypothesis (2), we want to detect clusters

with high rates of higher stages. This does not necessarily mean that detected clusters

should have rates for all categories exactly in increasing order. For example, suppose that

there are 4 disease stages. There could be a significant cluster with a high rate of stage 4

compared to stages 1, 2, and 3 combined, even though the rate of stage 3 is not so high as

that of stage 1 or 2. There also could be a significant cluster with a high rate of stages 3

and 4 combined compared to stage 2 or 1, etc. We should be able to detect such clusters as

well as clusters with the sequence of observed rates for all categories exactly in increasing

order. The MLEs in equations (4) and (5) are based on those combined categories. The
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algorithm for this procedure is provided in the Appendix.

2.2 Inference

Once we have the most likely cluster associated with the maximum value of the likelihood

ratio, we need to evaluate the significance. If the distribution of the test statistic can be

found, at least asymptotically, we can obtain a critical value at a given significance level.

However, this is usually not available for spatial scan statistics. An alternative way is to

use Monte Carlo hypothesis testing [9]. A large number of simulated data sets are then

generated under the null hypothesis and the test statistic is computed for each simulated

data set and compared to the value of the test statistic from the real data. The Monte

Carlo based p-value is defined as p = R/(#SIM+1) where R is the rank of the test statistic

from the real data set among all data sets and #SIM is the number of simulated data sets

that were generated. We usually use 999, 9999 or some number ending 999 for #SIM to

obtain ‘nice-looking’ p-values. In our analyses, 9999 Monte Carlo replications were run.

To generate random data sets under the null hypothesis, we condition on the total

numbers observed in each category. C1 individuals are first randomly chosen and assigned

to category 1, C2 of the remaining individuals are then randomly chosen and assigned to

category 2, and so on. After CK−1 individuals have been randomly assigned to category

K − 1, the remaining Ck are assigned to category K.

In addition to the most likely cluster, it can be useful to examine secondary clusters

with high values of the likelihood ratio. We report secondary clusters when those clusters

have no geographical overlap with another reported cluster with higher likelihood ratio.

The statistical significance of a secondary cluster is evaluated irrespectively of any other

clusters, by comparing its likelihood ratio value with the maximum likelihood ratio from

the generated random data sets.
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3 Maryland Prostate Cancer Data

The data are explained in detail elsewhere [12, 13] and are reviewed here. We obtained

records for all incident prostate cancer cases reported to the Maryland Cancer Registry for

the years 1992-1997. There were 24189 registry cases in total during that period. Cases with

verified Maryland residential addresses were geocoded to latitude and longitude. Cases that

could not be successfully geocoded were assigned to a coordinate location within their zip

code using a weighted population algorithm, based on 1990 United States Census race, age,

and gender specific block and block group distributions within the zip codes. 23993 cases

were geographically referenced and were aggregated into census block groups. Geographical

locations of each centroid of census block groups containing cases were used in the analyses.

The outcome measures are histological grade of tumor and the Surveillance, Epidemiol-

ogy and End Stage (SEER) summary stage of disease at diagnosis [14], with grade recorded

as 1, 2, 3, or 4 and stage as 0, 1, 2, 3, 4, 5, or 7. Cases with missing information on age,

race and census block group, and the cases with stage 0 were excluded. Cases missing stage

information were retained in the grade analyses and vice versa, so that 19223 cases were

used for the stage analyses and 18947 cases for the grade analyses.

[Tables 1 and 2 around here.]

3.1 Cluster Detection Analyses using the Spatial Scan Statistic

for Ordinal Data

Using the spatial scan statistic for ordinal data, we have scanned for areas with high or

low rates of higher grade prostate cancer cases in Maryland, and the detected clusters are

displayed in Map 1 in Figure 1 and described in Table 3. Cluster 1 is the most likely cluster

and 2-5 are the secondary clusters ordered by their statistical significance. Clusters 1, 3 and

4 are areas with high rates of higher grade and clusters 2 and 5 are areas with low rates.

More precisely, the most likely cluster is an area with low rates of grades 2-4 compared to
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grade 1 and cluster 2 is an area with high rates of grades 2-4 compared to grade 1.For the

other clusters, no categories were combined. Clusters 3 and 4 are areas with rates for grade

1 to 4 in decreasing sequence and cluster 5 in increasing sequence.

[Table 3 and Figure 1 around here.]

We also searched for clusters with high or low rate of later stage prostate cancer. The

most likely cluster and secondary clusters are listed in Table 4 and shown in Map 1 in

Figure 2. There are 4 clusters detected and cluster 2 is the only one with low rates of

later stage. Some of the 6 categories for stage were combined in every cluster; for example,

cluster 3 is an area with high rates of stages 2-7 compared to stage 1.

[Table 4 and Figure 2 around here.]

3.2 Ordinal model versus Bernoulli model

The Bernoulli-based scan statistic could be used as an alternative to search for clusters

with high or low rates of higher grade or later stage cancer cases by dichotomizing grade

and stage. Since there are 4 categories for grade and 6 for stage, 3 different cut-off points

are possible for grade and 5 for stage. Using the Bernoulli-based scan statistic we analyzed

Maryland prostate cancer data for all possible cut-off values.

Clusters detected using the Bernoulli model for prostate cancer grade are presented in

Map 2-4 in Figure 1 and Table 5. To compare the results from the ordinal model, clusters

detected using the spatial scan statistic for ordinal data are also displayed in Figure 1. For

grade 2-4 (vs 1), there are 3 clusters detected and for grade 3 or 4 (vs 1 or 2), 7 clusters

detected. Clusters based on these two different dichotomization are very different in terms

of cluster size and location. Since there are not so many cases with grade 4, there are only

two small clusters detected for grade 4 (vs 1-3) and they are also very different from the

other results. Compared with results based on the ordinal model, clusters 1, 2, and 3 in
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Map 1 (ordinal model) are exactly the same as in Map 2 (Bernoulli model for grade 2-4).

Cluster 4 in Map 1 is approximately the same as cluster 2 in Map 3 and cluster 5 in Map 1 is

part of cluster 1 in Map 4. Most of the most significant clusters from the Bernoulli models

with different cut-off points are detected with the ordinal model.

[Table 5 around here.]

The results for stage using the Bernoulli-based scan statistic are shown in Map 2-6 in

Figure 2 and Tables 6. The results for stage 3-7 (vs 1-2), 4-7 (vs 1-3), 5-7 (vs 1-4), and

7 (vs 1-5) are very similar since around 80% of the total cases are stage 1 with very few

stages 3-5. Most clusters from the ordinal model shown in Map 1 coincide with a cluster in

one of the other maps generated by the Bernoulli models. The most likely cluster in Map 1

is very similar to the most likely cluster in Maps 3-6. Cluster 3 in Map 1 is very similar

to cluster 2 in Map 2 and cluster 4 in Map 1 is partly overlapping with cluster 1 in Map 2

and cluster 4 in Map 3-6. Cluster 2 in Map 1 is partly overlapping with clusters 3 and 4 in

Map 2, and clusters 2 and 3 in Map 3-6.

[Table 6 around here.]

4 Discussion

We have proposed a spatial scan statistic for ordinal data. An alternative to analyzing such

data is to dichotomize and use the Bernoulli-based scan statistic. As seen in the prostate

cancer data example, the cluster detection results depend significantly on the cut-off points.

The problems using the Bernoulli-based scan statistic for ordinal data are that the cut-off

points should be determined first and that it may not be clear where to cut. Using the

spatial scan statistic for ordinal data, we can detect clusters and make inferences on the

detected clusters without dichotomization or any further assumptions.

This approach has been applied here to prostate cancer data on grade and stage of dis-

10



ease. The application of the method should not be limited to disease outcome, but rather

it is applicable to any type of ordinal data in diverse fields. For example, in survey ques-

tionnaires, attitudes and preferences are often measured using a Likert scale. Answers for

demographic questions such as age and income are usually classified into ordered categorical

variables. In other settings, it may be of interest to use a categorized variable of continuous

outcome. Suppose that we are interested in geographical variation of babies’ birth weight

in certain region. Then, analyses based on categorized values such as very low, low, and

normal may be more appropriate than using the continuous values, when it is only the low

birth weights that are of concern.

The spatial scan statistic for ordinal data proposed in this paper has been developed

for spatial data, but it can also be used for temporal data using a one-dimensional scan-

ning window. It can also be directly extended to a space-time setting using a cylindrical

window in three dimensions with the base of the cylinder representing space and the height

representing time, for either retrospective [15] or prospective analyses [16]. Besides the

circular shape of scanning window, we can also consider other shapes such as elliptical [17]

or irregular shapes [18,19,20].

The ordinal scan statistic for temporal, spatial, and space-time data has recently been

implemented into the freely available SaTScanTM software version 6.0, which can be down-

loaded from www.satscan.org.
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Appendix

Using the “Pool-Adjacent-Violators” algorithm, the MLEs of pk and qk for k = 1, . . . , K

under (2) can be obtained explicitly. Here we explain how to calculate the MLEs for a

particular zone Z.

1. With the same notation of Wk, Uk, W , and U in page 5, compute the unrestricted

MLEs p̃k and q̃k (k = 1, · · · , K);

p̃k =
Wk

W
, q̃k =

Uk

U
.

2. Temporarily, we set

p̂k = p̃k , q̂k = q̃k.

If p̂k/q̂k is nondecreasing for all k = 1, . . . , K, then these are the MLEs of pk and qk;

p̂k =
Wk

W
, q̂k =

Uk

U
.

3. Otherwise, we do the following for k = 1, . . . , K while p̂l/q̂l > p̂k/q̂k with l = k − 1

for l > 0. For j = l, . . . , k

p̂j =

∑k
j=l Wj

W

Cj∑k
j=l Cj

, q̂j =

∑k
j=l Uj

U

Cj∑k
j=l Cj

.

Note that p̂j/q̂j is the same for j = l, . . . , k, which is the observed rate for combined

categories. In this step, we keep “pooling adjacent violators” of p̂k/q̂k and updating

p̂k and q̂k accordingly until p̂k/q̂k becomes nondecreasing for k = 1, . . . , K. Finally,

the likelihood ratio test statistic for the particular zone Z is computed with these

updated estimates and the MLE of pk under the null hypothesis (p̂ok = Ck/C).
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For a very simple illustration, suppose that we have 4 categories and that the number

observed for each category is 1,2,3,4 inside a particular zone and 1,4,3,2 outside the zone.

Then, [p̃k] = (1, 2, 3, 4)/10 , [q̃k] = (1, 4, 3, 2)/10 and [p̃k/q̃k] = (1, 1/2, 1, 2). Since p̃1/q̃1 >

p̃2/q̃2, we combine the categories 1 and 2 and obtain (p̂1/q̂1 = p̂2/q̂2, p̂3/q̂3, p̂4/q̂4) = ((1 +

2)/(1 + 4), 1, 2) = (3/5, 1, 2) with p̂1 = (1 + 2)/10 · 2/8, q̂1 = (1 + 4)/10 · 2/8, p̂2 =

(1 + 2)/10 · 6/8, q̂2 = (1 + 4)/10 · 6/8, p̂k = p̃k and q̂k = q̃k for k = 3, 4.
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Histological Tumor Grade n %

1 well differentiated 2289 12.1

2 moderately well differentiated 12335 65.1

3 poorly differentiated 4199 22.2

4 undifferentiated 124 0.7

Total 18947 100.0

Table 1: The number of diagnosed prostate cancer cases in Maryland (1992-1997), used for analyses, broken

down by tumor grade

SEER Summary Stage n %

1 localized 15223 79.2

2 regional, direct extension only 2190 11.4

3 regional, lymph nodes only 255 1.3

4 regional, direct extension and lymph nodes 165 0.9

5 regional, other 145 0.8

7 distant 1235 6.4

Total 19223 100.0

Table 2: The number of diagnosed prostate cancer cases in Maryland (1992-1997), used for analyses, broken

down by disease stage

1



Radius(km) Categories #O/#E RR LLR P-value

cluster 1 46.46 (1,[2-4]) (2.43,0.80) (2.46,0.80) 136.56 0.0001

cluster 2 45.94 (1,[2-4]) (0.68,1.04) (0.67,1.08) 135.04 0.0001

cluster 3 25.11 (1,2,3,4) (2.87,0.80,0.59,0.38) (2.88,0.80,0.58,0.38) 73.34 0.0001

cluster 4 53.39 (1,2,3,4) (1.40,1.04,0.68,0.34) (1.40,1.05,0.68,0.34) 23.01 0.0001

cluster 5 8.50 (1,2,3,4) (0.63,0.97,1.21,4.04) (0.63,0.97,1.21,4.05) 17.51 0.0015

Table 3: Cluster detection analysis result for prostate cancer grade in Maryland using the ordinal scan statistic;

#O/#E=ratio of numbers observed versus expected, RR=relative risk, LLR=log-likelihood ratio

Radius(km) Categories #O/#E RR LLR P-value

cluster 1 5.30 (1,[2-4],[5,7]) (0.86,1.25,2.04) (0.86,1.27,2.20) 56.15 0.0001

cluster 2 42.92 (1,[2-4],5,7) (1.04,0.91,0.71,0.71) (1.07,0.87,0.61,0.61) 46.67 0.0001

cluster 3 19.56 (1,[2-7]) (0.75,1.97) (0.74,2.01) 44.29 0.0001

cluster 4 126.86 (1,[2-5],7) (0.91,1.28,1.51) (0.90,1.32,1.60) 33.90 0.0001

Table 4: Cluster detection analysis result for prostate cancer stage in Maryland using the ordinal scan statistic;

#O/#E=ratio of numbers observed versus expected, RR=relative risk, LLR=log-likelihood ratio
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Radius(km) #O/#E RR LLR P-value

Grade 2-4 (vs 1)

cluster 1 46.46 0.80 0.79 136.56 0.0001

cluster 2 45.94 1.04 1.09 135.04 0.0001

cluster 3 25.11 0.74 0.74 70.84 0.0001

Grade 3-4 (vs 1-2)

cluster 1 5.99 1.28 1.33 28.79 0.0001

cluster 2 44.93 0.69 0.67 22.44 0.0001

cluster 3 10.34 0.69 0.68 17.81 0.0004

cluster 4 5.93 0.52 0.52 16.30 0.0011

cluster 5 6.39 1.69 1.79 15.40 0.0019

cluster 6 40.44 0.57 0.57 14.00 0.0080

cluster 7 13.23 3.24 3.25 13.49 0.0131

Grade 4 (vs 1-3)

cluster 1 12.86 3.22 3.96 17.17 0.0001

cluster 2 15.42 0.19 0.16 12.06 0.0144

Table 5: Cluster detection analysis result for prostate cancer grade in Maryland using the Bernoulli-based scan

statistic; #O/#E=ratio of numbers observed versus expected, RR=relative risk, LLR=log-likelihood ratio
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Radius(km) #O/#E RR LLR P-value

Stage 2-7 (vs 1)

cluster 1 85.32 1.18 1.31 45.83 0.0001

cluster 2 20.72 1.94 1.99 45.56 0.0001

cluster 3 41.23 0.71 0.68 34.56 0.0001

cluster 4 10.61 0.71 0.69 28.70 0.0001

Stage 3-7 (vs 1-2)

cluster 1 3.85 1.98 2.07 46.73 0.0001

cluster 2 42.40 0.78 0.68 32.61 0.0001

cluster 3 32.16 0.66 0.63 18.50 0.0002

cluster 4 82.88 1.51 1.56 14.46 0.0045

Stage 4-7 (vs 1-3)

cluster 1 3.85 2.08 2.23 46.87 0.0001

cluster 2 42.41 0.74 0.62 41.68 0.0001

cluster 3 32.21 0.63 0.60 18.16 0.0003

cluster 4 83.24 1.56 1.62 14.88 0.0030

Stage 5,7 (vs 1-4)

cluster 1 3.85 2.18 2.34 48.21 0.0001

cluster 2 49.68 0.71 0.60 42.58 0.0001

cluster 3 36.82 0.65 0.61 19.28 0.0001

cluster 4 78.06 1.48 1.54 13.03 0.0169

Stage 7 (vs 1-5)

cluster 1 4.39 2.07 2.25 42.97 0.0001

cluster 2 46.30 0.70 0.59 39.76 0.0001

cluster 3 36.82 0.62 0.58 21.14 0.0001

cluster 4 55.86 1.67 1.75 17.14 0.0005

Table 6: Cluster detection analysis results for prostate cancer stage in Maryland using the Bernoulli-based scan

statistic; #O/#E=ratio of numbers observed versus expected, RR=relative risk, LLR=log-likelihood ratio

4



Map 1: Clusters based on Ordinal Model for Grade Map 2: Clusters based on Bernoulli Model for Grade 2-4 (vs 1)

Map 3: Clusters based on Bernoulli Model for Grade 3-4 (vs 1-2) Map 4: Clusters based on Bernoulli Model for Grade 4 (vs 1-3)

Figure 1: Cluster detection analysis results for prostate cancer grade in Maryland using the spatial scan statistic 
for ordinal data (Map 1) versus using the Bernoulli based spatial scan statistic (Map 2-4); red areas with 
crosshatched lines=clusters with high rates of higher grade, blue areas with parallel lines=clusters with low 
rates of higher grade 



Map 2: Clusters based on Bernoulli Model for Stage 2-7 (vs 1)Map 1: Clusters based on Ordinal Model for Stage

Map 3: Clusters based on Bernoulli Model for Stage 3-7 (vs 1-2) Map 4: Clusters based on Bernoulli Model for Stage 4-7 (vs 1-3)

Map 5: Clusters based on Bernoulli Model for  Stage 5,7 (vs 1-4) Map 6: Clusters based on Bernoulli Model for Stage 7 (vs 1-5)

Figure 2: Cluster detection analysis results for prostate cancer stage in Maryland using the spatial scan statistic 
for ordinal data (Map 1) versus using the Bernoulli based spatial scan statistic (Map 2-6); red areas with 
crosshatched lines=clusters with high rates of later stage, blue areas with parallel lines=clusters with low rates 
of later stage


